首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   577篇
  免费   29篇
  国内免费   4篇
  610篇
  2024年   1篇
  2023年   4篇
  2022年   7篇
  2021年   29篇
  2020年   8篇
  2019年   20篇
  2018年   20篇
  2017年   14篇
  2016年   13篇
  2015年   25篇
  2014年   32篇
  2013年   36篇
  2012年   32篇
  2011年   50篇
  2010年   28篇
  2009年   14篇
  2008年   45篇
  2007年   33篇
  2006年   35篇
  2005年   30篇
  2004年   23篇
  2003年   21篇
  2002年   24篇
  2001年   11篇
  2000年   2篇
  1999年   5篇
  1998年   8篇
  1997年   7篇
  1996年   3篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1986年   3篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有610条查询结果,搜索用时 0 毫秒
21.
In vivo imaging of model organisms is heavily reliant on fluorescent proteins with high intracellular brightness. Here we describe a practical method for rapid optimization of fluorescent proteins via directed molecular evolution in cultured mammalian cells. Using this method, we were able to perform screening of large gene libraries containing up to 2 × 107 independent random genes of fluorescent proteins expressed in HEK cells, completing one iteration of directed evolution in a course of 8 days. We employed this approach to develop a set of green and near‐infrared fluorescent proteins with enhanced intracellular brightness. The developed near‐infrared fluorescent proteins demonstrated high performance for fluorescent labeling of neurons in culture and in vivo in model organisms such as Caenorhabditis elegans, Drosophila, zebrafish, and mice. Spectral properties of the optimized near‐infrared fluorescent proteins enabled crosstalk‐free multicolor imaging in combination with common green and red fluorescent proteins, as well as dual‐color near‐infrared fluorescence imaging. The described method has a great potential to be adopted by protein engineers due to its simplicity and practicality. We also believe that the new enhanced fluorescent proteins will find wide application for in vivo multicolor imaging of small model organisms.  相似文献   
22.
Male C3H mice were exposed to 100 W m-2 of 2.45 GHz continuous-wave microwave radiation for 6 h per day for a total of 120 h over an 8-week period. The exposure level was chosen so that the specific energy absorption rate (SAR) would be approximately equal to the level of 4 W kg-1 which is considered by a number of organizations to be a threshold for adverse biological effects. At the end of the treatment period the mice were mated with a different group of (C3H x 101) F1 hybrid females each week for the following 8 weeks. There was no significant reduction in pregnancy rate, preimplantation survival or postimplantation survival in the exposed group compared to sham-exposed controls. At the end of the mating period a cytogenetic analysis was carried out of meiotic chromosome preparations of testicular tissue, thus sampling cells that were stem cell spermatogonia during the treatment regime. The results showed no difference in the frequency of reciprocal translocations between the sham and treated groups, or in the frequency of cells with autosome or sex chromosome univalents. Low levels of fragments and exchanges were found in both groups. It is concluded that there is no evidence in this experiment to show that chronic exposure of male mice to 2.45 GHz microwave radiation induces a mutagenic response in male germ cells. This conclusion is in agreement with the observations of Berman et al. (1980), who reported a lack of male germ cell mutagenesis after repetitive or chronic exposure of rats to 2.45 GHz.  相似文献   
23.
Chaperonins are a family of chaperones that encapsulate their substrates and assist their folding in an ATP-dependent manner. The ubiquitous eukaryotic chaperonin, TCP-1 ring complex (TRiC), is a hetero-oligomeric complex composed of two rings, each formed from eight different CCT (chaperonin containing TCP-1) subunits. Each CCT subunit may have distinct substrate recognition and ATP hydrolysis properties. We have expressed each human CCT subunit individually in Escherichia coli to investigate whether they form chaperonin-like double ring complexes. CCT4 and CCT5, but not the other six CCT subunits, formed high molecular weight complexes within the E. coli cells that sedimented about 20S in sucrose gradients. When CCT4 and CCT5 were purified, they were both organized as two back-to-back rings of eight subunits each, as seen by negative stain and cryo-electron microscopy. This morphology is consistent with that of the hetero-oligomeric double-ring TRiC purified from bovine testes and HeLa cells. Both CCT4 and CCT5 homo-oligomers hydrolyzed ATP at a rate similar to human TRiC and were active as assayed by luciferase refolding and human γD-crystallin aggregation suppression and refolding. Thus, both CCT4 and CCT5 homo-oligomers have the property of forming 8-fold double rings absent the other subunits, and these complexes carry out chaperonin reactions without other partner subunits.  相似文献   
24.
The radial spokes are required for Ca(2+)-initiated intraflagellar signaling, resulting in modulation of inner and outer arm dynein activity. However, the mechanochemical properties of this signaling pathway remain unknown. Here, we describe a novel nucleoside diphosphate kinase (NDK) from the Chlamydomonas flagellum. This protein (termed p61 or RSP23) consists of an N-terminal catalytic NDK domain followed by a repetitive region that includes three IQ motifs and a highly acidic C-terminal segment. We find that p61 is missing in axonemes derived from the mutants pf14 (lacks radial spokes) and pf24 (lacks the spoke head and several stalk components) but not in those from pf17 (lacking only the spoke head). The p61 protein can be extracted from oda1 (lacks outer dynein arms) and pf17 axonemes with 0.5 M KI, and copurifies with radial spokes in sucrose density gradients. Furthermore, p61 contains two classes of calmodulin binding site: IQ1 interacts with calmodulin-Sepharose beads in a Ca(2+)-independent manner, whereas IQ2 and IQ3 show Ca(2+)-sensitive associations. Wild-type axonemes exhibit two distinct NDKase activities, at least one of which is stimulated by Ca(2+). This Ca(2+)-responsive enzyme, which accounts for approximately 45% of total axonemal NDKase, is missing from pf14 axonemes. We found that purified radial spokes also exhibit NDKase activity. Thus, we conclude that p61 is an integral component of the radial spoke stalk that binds calmodulin and exhibits Ca(2+)-controlled NDKase activity. These observations suggest that nucleotides other than ATP may play an important role in the signal transduction pathway that underlies the regulatory mechanism defined by the radial spokes.  相似文献   
25.
26.
An insertion/deletion polymorphism (Ind2) in the Brassica nigra CONSTANS LIKE 1 (Bni COL1) gene was previously found to be associated with variation in flowering time. In the present study we examine the inter-specific divergence of COL1 in the family Brassicaceae. Analysis of codon substitution models did not reveal evidence of positive Darwinian selection, but comparisons of the COL1 gene in different species revealed a surprising number of indels. A total of 24 indels were found in the 650 bp of the middle variable region of the gene. This high number of indels could reflect a lack of constraint on length of this region of the protein, or the effect of positive selection. The number of indels was close to that expected in non-coding DNA, but the indels were longer in COL1 than those observed in non-coding regions. Reconstruction of indel evolution indicated that most indels resulted from deletions rather than insertions. The Ind2 indel that has shown association with flowering time in Brassica nigra exhibited a remarkable distribution in the Brassicaceae family, indicating that the polymorphism may have persisted more than ten million years. Considering presumed historic populations sizes of Brassicaceae species, such a long persistence time seems unlikely for a neutral polymorphism.  相似文献   
27.
We recently found that S100A4, a member of the multifunctional S100 protein family, protects neurons in the injured brain and identified two sequence motifs in S100A4 mediating its neurotrophic effect. Synthetic peptides encompassing these motifs stimulated neuritogenesis and survival in vitro and mimicked the S100A4-induced neuroprotection in brain trauma. Here, we investigated a possible function of S100A4 and its mimetics in the pathologies of the peripheral nervous system (PNS). We found that S100A4 was expressed in the injured PNS and that its peptide mimetic (H3) affected the regeneration and survival of myelinated axons. H3 accelerated electrophysiological, behavioral and morphological recovery after sciatic nerve crush while transiently delaying regeneration after sciatic nerve transection and repair. On the basis of the finding that both S100A4 and H3 increased neurite branching in vitro, these effects were attributed to the modulatory effect of H3 on initial axonal sprouting. In contrast to the modest effect of H3 on the time course of regeneration, H3 had a long-term neuroprotective effect in the myelin protein P0 null mice, a model of dysmyelinating neuropathy (Charcot-Marie-Tooth type 1 disease), where the peptide attenuated the deterioration of nerve conduction, demyelination and axonal loss. From these results, S100A4 mimetics emerge as a possible means to enhance axonal sprouting and survival, especially in the context of demyelinating neuropathies with secondary axonal loss, such as Charcot-Marie-Tooth type 1 disease. Moreover, our data suggest that S100A4 is a neuroprotectant in PNS and that other S100 proteins, sharing high homology in the H3 motif, may have important functions in PNS pathologies.  相似文献   
28.
Riboswitch regulation of gene expression requires ligand‐mediated RNA folding. From the fluorescence lifetime distribution of bound 2‐aminopurine ligand, we resolve three RNA conformers (Co, Ci, Cc) of the liganded G‐ and A‐sensing riboswitches from Bacillus subtilis. The ligand binding affinities, and sensitivity to Mg2+, together with results from mutagenesis, suggest that Co and Ci are partially unfolded species compromised in key loop‐loop interactions present in the fully folded Cc. These data verify that the ligand‐bound riboswitches may dynamically fold and unfold in solution, and reveal differences in the distribution of folded states between two structurally homologous purine riboswitches: Ligand‐mediated folding of the G‐sensing riboswitch is more effective, less dependent on Mg2+, and less debilitated by mutation, than the A‐sensing riboswitch, which remains more unfolded in its liganded state. We propose that these sequence‐dependent RNA dynamics, which adjust the balance of ligand‐mediated folding and unfolding, enable different degrees of kinetic discrimination in ligand binding, and fine‐tuning of gene regulatory mechanisms. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 953–965, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   
29.
Epsin and AP180 are essential components of the endocytotic machinery, which controls internalization of protein receptors and other macromolecules at the cell surface. Epsin and AP180 are recruited to the plasma membrane by their structurally and functionally related N-terminal ENTH and ANTH domains that specifically recognize PtdIns(4,5)P2. Here, we show that membrane anchoring of the ENTH and ANTH domains is regulated by the acidic environment. Lowering the pH enhances PtdIns(4,5)P2 affinity of the ENTH and ANTH domains reinforcing their association with lipid vesicles and monolayers. The pH dependency is due to the conserved histidine residues of the ENTH and ANTH domains, protonation of which is necessary for the strong PtdIns(4,5)P2 recognition, as revealed by liposome binding, surface plasmon resonance, NMR, monolayer surface tension and mutagenesis experiments. The pH sensitivity of the ENTH and ANTH domains is reminiscent to the pH dependency of the FYVE domain suggesting a common regulatory mechanism of membrane anchoring by a subset of the PI-binding domains.  相似文献   
30.
Summary The formation of stable equimolar complexes of streptokinase or plasminogen with muscle lactate dehydrogenase or pyruvate kinase, heart mitochondrial malate dehydrogenase and hepatic catalase at pH 7.4, 3.0 and 10.0 was first detected by differential spectroscopy methods. All complexes, except those of plasminogen with dehydrogenases, were resistant to 6 M urea. Judging from circular dichroism spectra, tertiary and secondary structures were considerably changed in the complexes. These changes were significantly dependent upon the nature of interacting proteins; in some cases their structures were more ordered. NAD (but not NADH) hampered the formation of streptokinase complexes with dehydrogenases. The plasminogen-activating function of streptokinase and the ability of plasminogen to be activated by streptokinase in the complexes with oxidoreductases were essentially unchanged. Pyruvate kinase induced a moderate (by 35%) increase in the streptokinase activating function. It is assumed that the formation of complexes of streptokinase or plasminogen with enzymes may serve as a link in metabolic regulation and/or intercellular interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号