首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   1篇
  2021年   4篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   4篇
  2012年   7篇
  2011年   5篇
  2010年   3篇
  2009年   3篇
  2008年   7篇
  2007年   5篇
  2006年   8篇
  2005年   5篇
  2004年   5篇
  2003年   7篇
  2002年   7篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1982年   4篇
  1979年   3篇
  1978年   2篇
  1973年   1篇
  1968年   1篇
排序方式: 共有111条查询结果,搜索用时 390 毫秒
51.
Conventional photothermal (PT) and photoacousic (PA) imaging, spectroscopy, and cytometry are preferentially based on positive PT/PA effects, when signals are above background. Here, we introduce PT/PA technique based on detection of negative signals below background. Among various new applications, we propose label-free in vivo flow cytometry of circulating clots. No method has been developed for the early detection of clots of different compositions as a source of thromboembolism including ischemia at strokes and myocardial infarction. When a low-absorbing, platelet-rich clot passes a laser-irradiated vessel volume, a transient decrease in local absorption results in an ultrasharp negative PA hole in blood background. Using this phenomenon alone or in combination with positive contrasts, we demonstrated identification of white, red, and mixed clots on a mouse model of myocardial infarction and human blood. The concentration and size of clots were measured with threshold down to few clots in the entire circulation with size as low as 20 μm. This multiparameter diagnostic platform using portable personal high-speed flow cytometer with negative dynamic contrast mode has potential to real-time defining risk factors for cardiovascular diseases, and for prognosis and prevention of stroke or use clot count as a marker of therapy efficacy. Possibility for label-free detection of platelets, leukocytes, tumor cells or targeting themby negative PA probes (e.g., nonabsorbing beads or bubbles) is also highlighted.  相似文献   
52.
53.
The effect of Withania somnifera extract supplementation diets on innate immune response in giant freshwater prawn Macrobrachium rosenbergii (de Man) against Aeromonas hydrophila was investigated. The bacterial clearance efficiency significantly increased in prawn fed with 0.1% and 1.0% doses of W. somnifera supplementation diet against pathogen from weeks 1-4 as compared to the control. The innate immune parameters such as, phenoloxidase activity, superoxide anion level, superoxide dismutase activity, nitrate, and nitrite concentrations were significantly enhanced in prawn fed with 0.1% and 1.0% doses of W. somnifera supplementation diet from weeks 1-4 against pathogen. The total hemocyte counts (THC) significantly increased in prawn fed with 0.1% and 1.0% doses diet from weeks 1-4 against pathogen as compared to the control. These results strongly suggested that administration of W. somnifera through supplementation diet positively enhances the innate immune system and enhanced survival rate in M. rosenbergii against A. hydrophila infection.  相似文献   
54.
Angiotensin II (Ang II) exerts its effects by activating its receptors, primarily type 1 (AT1R) and type 2 (AT2R). While the role of AT1R activation in cardiomyocyte physiology is well known, the role of AT2R in cardiomyocyte apoptosis remains controversial. To define the precise role of AT1R and AT2R in this process, we transfected HL-1 cardiomyocytes with AT1R or AT2R cDNA, and examined markers of apoptosis. We found that AT1R overexpression was associated with upregulation of endogenous AT2R expression, but AT2R overexpression did not affect endogenous AT1R expression. Caspase-3 staining indicated that overexpression of AT1R as well as AT2R resulted in cardiomyocyte apoptosis with appropriate alterations in annexin V, Bax and Bcl2 expression. Overexpression of AT1R and AT2R markedly increased IL-1β (AT2R>AT1R), iNOS (AT2R>AT1R) and eNOS expression. AT2R-induced cell apoptosis could be blocked by the iNOS selective inhibitor 1,400?W, and did not require exogenous Ang II. These findings suggest that AT2R overexpression induces cardiomyocyte apoptosis, most likely via iNOS upregulation. AT1R-mediated cardiomyocyte apoptosis may be partially mediated by upregulation of endogenous AT2R.  相似文献   
55.
Loss of exercise-induced cardioprotection after cessation of exercise.   总被引:3,自引:0,他引:3  
Endurance exercise provides cardioprotection against ischemia-reperfusion (I/R) injury. Exercise-induced cardioprotection is associated with increases in cytoprotective proteins, including heat shock protein 72 (HSP72) and increases in antioxidant enzyme activity. On the basis of the reported half-life of these putative cardioprotective proteins, we hypothesized that exercise-induced cardioprotection against I/R injury would be lost within days after cessation of exercise. To test this, male rats (4 mo) were randomly assigned to one of five experimental groups: 1). sedentary control, 2). exercise followed by 1 day of rest, 3). exercise followed by 3 days of rest, 4). exercise followed by 9 days of rest, and 5). exercise followed by 18 days of rest. Exercise-induced increases (P < 0.05) in left ventricular catalase activity and HSP72 were evident at 1 and 3 days postexercise. However, at 9 days postexercise, myocardial HSP72 and catalase levels declined to sedentary control values. To evaluate cardioprotection during recovery from I/R, hearts were isolated, placed in working heart mode, and subjected to 20.5 min of global ischemia followed by 30 min of reperfusion. Compared with sedentary controls, exercised animals sustained less I/R injury as evidenced by maintenance of a higher (P < 0.05) percentage of preischemia cardiac work during reperfusion at 1, 3, and 9 days postexercise. The exercise-induced cardioprotection vanished by 18 days after exercise cessation. On the basis of the time course of the loss of cardioprotection and the return of HSP72 and catalase to preexercise levels, we conclude that HSP72 and catalase are not essential for exercise-induced protection during myocardial stunning. Therefore, other cytoprotective molecules are responsible for providing protection during I/R.  相似文献   
56.
Kabir M  Sudhamsu J  Crane BR  Yeh SR  Rousseau DL 《Biochemistry》2008,47(47):12389-12397
Nitric oxide synthase (NOS) generates NO via a sequential two-step reaction [l-arginine (l-Arg) --> N-hydroxy-l-arginine (NOHA) --> l-citrulline + NO]. Each step of the reaction follows a distinct mechanism defined by the chemical environment introduced by each substrate bound to the heme active site. The dioxygen complex of the NOS enzyme from a thermophilic bacterium, Geobacillus stearothermophilus (gsNOS), is unusually stable; hence, it provides a unique model for the studies of the mechanistic differences between the two steps of the NOS reaction. By using CO as a structural probe, we found that gsNOS exhibits two conformations in the absence of substrate, as indicated by the presence of two sets of nu(Fe-CO)/nu(C-O) modes in the resonance Raman spectra. In the nu(Fe-CO) versus nu(C-O) inverse correlation plot, one set of data falls on the correlation line characterized by mammalian NOSs (mNOS), whereas the other set of data lies on a new correlation line defined by a bacterial NOS from Bacillus subtilis (bsNOS), reflecting a difference in the proximal Fe-Cys bond strength in the two conformers of gsNOS. The addition of l-Arg stabilizes the conformer associated with the mNOS correlation line, whereas NOHA stabilizes the conformer associated with the bsNOS correlation line, although both substrates introduce a positive electrostatic potential into the distal heme pocket. To assess how substrate binding affects Fe-Cys bond strength, the frequency of the Fe-Cys stretching mode of gsNOS was monitored by resonance Raman spectroscopy with 363.8 nm excitation. In the substrate-free form, the Fe-Cys stretching mode was detected at 342.5 cm(-1), similar to that of bsNOS. The binding of l-Arg and NOHA brings about a small decrease and increase in the Fe-Cys stretching frequency, respectively. The implication of these unique structural features with respect to the oxygen chemistry of NOS is discussed.  相似文献   
57.
Transforming growth factor beta(1) (TGFbeta(1)) activation leads to tissue fibrosis. Here, we report on the role of LOX-1, a lectin-like 52-kDa receptor for oxidized low density lipoprotein, in TGFbeta(1)-mediated collagen expression and underlying signaling in mouse cardiac fibroblasts. TGFbeta(1) was overexpressed in wild-type (WT) and LOX-1 knock-out mouse cardiac fibroblasts by transfection with adeno-associated virus type 2 vector carrying the active TGFbeta(1) moiety (AAV/TGFbeta (ACT)(1)). Transfection of WT mouse cardiac fibroblasts with AAV/TGFbeta (ACT)(1) markedly enhanced the expression of NADPH oxidases (p22(phox), p47(phox), and gp91(phox) subunits) and LOX-1, formation of reactive oxygen species, and collagen synthesis, concomitant with an increase in the activation of p38 and p44/42 mitogen-activated protein kinases (MAPK). The TGFbeta(1)-mediated increase in collagen synthesis was markedly attenuated in the LOX-1 knock-out mouse cardiac fibroblasts as well as in WT mouse cardiac fibroblasts treated with a specific anti-LOX-1 antibody. Treatment with anti-LOX-1 antibody also reduced NADPH oxidase expression and MAPK activation. The NADPH oxidase inhibitors and gp91phox small interfering RNA reduced LOX-1 expression, MAPK activation, and collagen formation. The p38 MAPK inhibitors as well as the p44/42 MAPK inhibitors reduced collagen formation without affecting LOX-1 expression in cardiac fibroblasts. These observations suggest that collagen synthesis in cardiac fibroblasts involves a facilitative interaction between TGFbeta(1)-NADPH oxidase and LOX-1. Further, the activation of MAPK pathway appears to be downstream of TGFbeta(1)-reactive oxygen species-LOX-1 cascade.  相似文献   
58.
AtNOS1/AtNOA1 was identified as a nitric oxide-generating enzyme in plants, but that function has recently been questioned. To resolve issues surrounding AtNOA1 activity, we report the biochemical properties and a 2.36 A resolution crystal structure of a bacterial AtNOA1 ortholog (YqeH). Geobacillus YqeH fused to a putative AtNOA1 leader peptide complements growth and morphological defects of Atnoa1 mutant plants. YqeH does not synthesize nitric oxide from L-arginine but rather hydrolyzes GTP. The YqeH structure reveals a circularly permuted GTPase domain and an unusual C-terminal beta-domain. A small N-terminal domain, disordered in the structure, binds zinc. Structural homology among the C-terminal domain, the RNA-binding regulator TRAP, and the hypoxia factor pVHL define a recognition module for peptides and nucleic acids. TRAP residues important for RNA binding are conserved by the YqeH C-terminal domain, whose positioning is coupled to GTP hydrolysis. YqeH and AtNOA1 probably act as G-proteins that regulate nucleic acid recognition and not as nitric-oxide synthases.  相似文献   
59.
A facile synthesis of 5,5'-(1,4-phenylene)bis(3-aryl-2-pyrazolines) 4a-g has been achieved by the cyclo-addition reaction of hydrazine hydrate with bis-substituted chalcones 3a-g, which in turn were prepared by the Clasien-Schmidt condensation of p-substituted acetophenones 1a-g with terephthaldehyde. Condensation of 4a-g with omega-bromoalkoxyphthalimides 5a-b afforded the titled compounds 6a-n, some of which exhibited significant antimalarial as well as antimicrobial activity.  相似文献   
60.
Charcot-Leyden crystal (CLC) protein, initially reported to possess weak lysophospholipase activity, is still considered to be the eosinophil's lysophospholipase, but it shows no sequence similarities to any known lysophospholipases. In contrast, CLC protein has moderate sequence similarity, conserved genomic organization, and near structural identity to members of the galectin superfamily, and it has been designated galectin-10. To definitively determine whether or not CLC protein is a lysophospholipase, we reassessed its enzymatic activity in peripheral blood eosinophils and an eosinophil myelocyte cell line (AML14.3D10). Antibody affinity chromatography was used to fully deplete CLC protein from eosinophil lysates. The CLC-depleted lysates retained their full lysophospholipase activity, and this activity could be blocked by sulfhydryl group-reactive inhibitors, N-ethylmaleimide and p-chloromercuribenzenesulfonate, previously reported to inhibit the eosinophil enzyme. In contrast, the affinity-purified CLC protein lacked significant lysophospholipase activity. X-ray crystallographic structures of CLC protein in complex with the inhibitors showed that p-chloromercuribenzenesulfonate bound CLC protein via disulfide bonds with Cys(29) and with Cys(57) near the carbohydrate recognition domain (CRD), whereas N-ethylmaleimide bound to the galectin-10 CRD via ring stacking interactions with Trp(72), in a manner highly analogous to mannose binding to this CRD. Antibodies to rat pancreatic lysophospholipase identified a protein in eosinophil and AML14.3D10 cell lysates, comparable in size with human pancreatic lysophospholipase, which co-purifies in small quantities with CLC protein. Ligand blotting of human and murine eosinophil lysates with CLC protein as probe showed that it binds proteins also recognized by antibodies to pancreatic lysophospholipase. Our results definitively show that CLC protein is not one of the eosinophil's lysophospholipases but that it does interact with eosinophil lysophospholipases and known inhibitors of this lipolytic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号