首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   3篇
  166篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   5篇
  2013年   5篇
  2012年   6篇
  2011年   9篇
  2010年   9篇
  2009年   5篇
  2008年   6篇
  2007年   27篇
  2006年   5篇
  2005年   7篇
  2004年   4篇
  2003年   6篇
  2002年   9篇
  2001年   5篇
  2000年   7篇
  1999年   6篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1974年   1篇
  1973年   3篇
  1972年   3篇
排序方式: 共有166条查询结果,搜索用时 15 毫秒
71.
Honeybee larvae and pupae are extremely stenothermic, i.e. they strongly depend on accurate regulation of brood nest temperature for proper development (33–36°C). Here we study the mechanisms of social thermoregulation of honeybee colonies under changing environmental temperatures concerning the contribution of individuals to colony temperature homeostasis. Beside migration activity within the nest, the main active process is “endothermy on demand” of adults. An increase of cold stress (cooling of the colony) increases the intensity of heat production with thoracic flight muscles and the number of endothermic individuals, especially in the brood nest. As endothermy means hard work for bees, this eases much burden of nestmates which can stay ectothermic. Concerning the active reaction to cold stress by endothermy, age polyethism is reduced to only two physiologically predetermined task divisions, 0 to ∼2 days and older. Endothermic heat production is the job of bees older than about two days. They are all similarly engaged in active heat production both in intensity and frequency. Their active heat production has an important reinforcement effect on passive heat production of the many ectothermic bees and of the brood. Ectothermy is most frequent in young bees (<∼2 days) both outside and inside of brood nest cells. We suggest young bees visit warm brood nest cells not only to clean them but also to speed up flight muscle development for proper endothermy and foraging later in their life. Young bees inside brood nest cells mostly receive heat from the surrounding cell wall during cold stress, whereas older bees predominantly transfer heat from the thorax to the cell wall. Endothermic bees regulate brood comb temperature more accurately than local air temperature. They apply the heat as close to the brood as possible: workers heating cells from within have a higher probability of endothermy than those on the comb surface. The findings show that thermal homeostasis of honeybee colonies is achieved by a combination of active and passive processes. The differential individual endothermic and behavioral reactions sum up to an integrated action of the honeybee colony as a superorganism.  相似文献   
72.
The aim of this study was to investigate the prevalence and intensity of masticatory muscle and temporomandibular joint (TMJ) pain in Croatian war veterans with posttraumatic stress disorder (PTSD). The examined group consisted of 100 Croatian war veterans, in whom PTSD had previously been diagnosed. Patients were compared with 92 subjects who had not taken part in the war and in whom PTSD was excluded by psychiatric examination. The clinical examination consisted of palpation of the masticatory muscles, the prominent neck musculature, and TMJ. The examination technique used and the definition of items were previously tested for reliability and validity. 93% of the subjects with PTSD had masticatory muscle tenderness compared to 45.65% of the subjects in the control group (chi2 = 51.46, p < 0.0001). The most frequent painful location in the subjects with PTSD was the left lateral pterygoid site in 88%, and in subjects of the control group the right lateral pterygoid site in 28.26% of cases. The most painful location in the PTSD group was the left lateral pterygoid site in 72%, and in the control group the left posterior digastric in 4.35% of cases. 58% of the subjects with PTSD had TMJ tenderness compared to 3.26% of subjects in the control group (chi2 = 66.23, p < 0.0001). The most frequent painful location of TMJ in both groups was the left posterior capsule; in the PTSD group 38% and in subjects in the control group 2.17% of cases. The most painful location was the left posterior capsule in 28% of subjects with PTSD, while not one subject in the control group reported severe painful sensitivity. The very high frequency and intensity of pain in subjects with PTSD confirms the effect of stress on muscle and joint sensitivity, i.e. perception of pain.  相似文献   
73.
Heterothermic insects like honeybees, foraging in a variable environment, face the challenge of keeping their body temperature high to enable immediate flight and to promote fast exploitation of resources. Because of their small size they have to cope with an enormous heat loss and, therefore, high costs of thermoregulation. This calls for energetic optimisation which may be achieved by different strategies. An ‘economizing’ strategy would be to reduce energetic investment whenever possible, for example by using external heat from the sun for thermoregulation. An ‘investment-guided’ strategy, by contrast, would be to invest additional heat production or external heat gain to optimize physiological parameters like body temperature which promise increased energetic returns. Here we show how honeybees balance these strategies in response to changes of their local microclimate. In a novel approach of simultaneous measurement of respiration and body temperature foragers displayed a flexible strategy of thermoregulatory and energetic management. While foraging in shade on an artificial flower they did not save energy with increasing ambient temperature as expected but acted according to an ‘investment-guided’ strategy, keeping the energy turnover at a high level (∼56–69 mW). This increased thorax temperature and speeded up foraging as ambient temperature increased. Solar heat was invested to increase thorax temperature at low ambient temperature (‘investment-guided’ strategy) but to save energy at high temperature (‘economizing’ strategy), leading to energy savings per stay of ∼18–76% in sunshine. This flexible economic strategy minimized costs of foraging, and optimized energetic efficiency in response to broad variation of environmental conditions.  相似文献   
74.
Seizure activity has been proposed to result in the generation of reactive oxygen species (ROS), which then contribute to seizure-induced neuronal damage and eventually cell death. Although the mechanisms of seizure-induced ROS generation are unclear, mitochondria and cellular calcium overload have been proposed to have a crucial role. We aim to determine the sources of seizure-induced ROS and their contribution to seizure-induced cell death. Using live cell imaging techniques in glioneuronal cultures, we show that prolonged seizure-like activity increases ROS production in an NMDA receptor-dependent manner. Unexpectedly, however, mitochondria did not contribute to ROS production during seizure-like activity. ROS were generated primarily by NADPH oxidase and later by xanthine oxidase (XO) activity in a calcium-independent manner. This calcium-independent neuronal ROS production was accompanied by an increase in intracellular [Na+] through NMDA receptor activation. Inhibition of NADPH or XO markedly reduced seizure-like activity-induced neuronal apoptosis. These findings demonstrate a critical role for ROS in seizure-induced neuronal cell death and identify novel therapeutic targets.Reactive oxygen species (ROS) contribute to neuronal damage and have been linked to excitotoxicity.1, 2, 3, 4 An increase in ROS generation has also been identified in acute neurologic disease such as stroke,5,6 and recent evidence indicates that this may contribute to neuronal damage in seizures and epilepsy.7, 8, 9, 10 However, ROS measurements during seizure-like activity were predominantly performed in homogenates, extracellular fluids or brain regions with no clear demonstration of whether the ROS were of neuronal origin.9,11,12 Moreover, these studies lacked the necessary temporal resolution to determine accurately the evolution of ROS generation during and after prolonged seizure activity. Such obstacles can be overcome by live cell imaging of ROS, which has emerged as a powerful tool to study disease mechanisms.13If seizure activity induces ROS production in neurons, then a critical question is which sources of ROS production are triggered by such activity. Previous studies have suggested that mitochondria are the primary source of ROS generation in seizure models.8,14 However, there are alternative sources of ROS, in particular the enzymes NADPH oxidase and xanthine oxidase (XO). How these contribute to excitotoxicity during seizure activity is uncertain. That these enzymes may have an important role in seizure-induced ROS generation is suggested by two observations: (1) NMDA receptors have a pivotal role in seizure-induced neuronal damage15 and (2) direct pharmacologic activation of NMDA receptors can activate NADPH oxidase, increasing free radical production and consequently neuronal death.5,16,17 There is also burgeoning evidence of a role for NADPH oxidase activation in chronic brain pathology secondary to psychosocial stress, which leads to the development of neuropathologic alterations, and also in neurodegenerative disease.18,19Acute activation of NADPH oxidase in neurons has mainly been shown after direct pharmacologic activation of NMDA receptors via exposure to high levels of NMDA and this activation is calcium-dependent.16,17 More recently, activation of NADPH oxidase has been shown during seizure activity.9,20 These pathways also involved NMDA receptor activation and upregulation of NMDA receptor subunits NR1 and NR2B. Nonetheless, these studies used chemoconvulsant epilepsy models, which, in themselves, may have an impact on ROS generation. The mechanisms and relevance of activation of NADPH oxidase during seizure activity independent of chemoconvulsants is unclear, especially given the presence of alternative sources of ROS production. Moreover, XO may also represent a major potential source of ROS during periods of increased metabolism, such as that occuring during seizures. We have therefore asked whether NMDA receptor activation has a role in seizure-induced ROS production and which sources and mechanisms of ROS production are involved in its time course during seizure-like activity.Here, we demonstrate increased ROS generation during seizure-like activity. This is activity-dependent, but it is maintained by a Ca2+-independent pathway involving the activation of NMDA receptors, NADPH oxidase and XO at a later phase. Blocking NADPH oxidase and XO prevented seizure-induced neuronal cell death in vitro. We thus provide compelling evidence that these ROS-generating pathways are appropriate targets for preventing neuronal death in seizures.  相似文献   
75.
Angiopoietins are a recently discovered family of angiogenic factors that interact with the endothelial receptor tyrosine kinase Tie2, either as agonists (angiopoietin-1) or as context-dependent agonists/antagonists (angiopoietin-2). Here we show that angiopoietin-1 has a modular structure unlike any previously characterized growth factor. This modular structure consists of a receptor-binding domain, a dimerization motif and a superclustering motif that forms variable-sized multimers. Genetic engineering of precise multimers of the receptor-binding domain of angiopoietin-1, using surrogate multimerization motifs, reveals that tetramers are the minimal size required for activating endothelial Tie2 receptors. In contrast, engineered dimers can antagonize endothelial Tie2 receptors. Surprisingly, angiopoietin-2 has a modular structure and multimerization state similar to that of angiopoietin-1, and its antagonist activity seems to be a subtle property encoded in its receptor-binding domain.  相似文献   
76.
Glutamate excitotoxicity is responsible for neuronal death in acute neurological disorders including stroke, trauma and neurodegenerative disease. Loss of calcium homeostasis is a key mediator of glutamate-induced cell death. The neurotransmitter dopamine (DA) is known to modulate calcium signalling, and here we show that it can do so in response to physiological concentrations of glutamate. Furthermore, DA is able to protect neurons from glutamate-induced cell death at pathological concentrations of glutamate. We demonstrate that DA has a novel role in preventing delayed calcium deregulation in cortical, hippocampal and midbrain neurons. The effect of DA in abolishing glutamate excitotoxicity can be induced by DA receptor agonists, and is abolished by DA receptor antagonists. Our data indicate that the modulation of glutamate excitotoxicity by DA is receptor-mediated. We postulate that DA has a major physiological function as a safety catch to restrict the glutamate-induced calcium signal, and thereby prevent glutamate-induced cell death in the brain.  相似文献   
77.
78.
Seven male cats were adapted to different schedules of restricted sleep. The cat was permitted to go to sleep either 2, 4 or 8 hours per day with the balance to 24-h periode spent in wakefulness enforced by means of a treadmill. Two experiments were run and the same cats served in both runs. The experiments and schedules were separated by at least two weeks during which time cats were maintained under ordinary laboratory conditions. Our experiment used treadmill speed of 2.6 m/min which was easily tolerated and effective in eliminating sleep. Another experiment used treadmill speed of 4.6 m/min which produced more physical exercise. As available sleep time become progressively shorter, REM sleep increased while SWS decreased. If restriction in sleep time was associated with more physical exercise then the composition of the subsequent sleep was different : SWS increased while REM sleep decreased. The functional significance of these opposite effects are presumably different. The immediate SWS response to the prior muscular exercise is suggestive of its recovery function.  相似文献   
79.
The terminal structure of the linear mitochondrial DNA (mtDNA) from the yeast Candida parapsilosis was investigated. This mtDNA, 30 kb long, has symmetrical ends forming inverted terminal repeats. These repeats are made up of a variable number of tandemly repeating units of 738 by each; the terminal nucleotide corresponds to a precise position within the last repeat unit sequence. The ends had an open structure accessible to enzymes, with a 5 single-stranded extension of about 110 nucleotides. No circular forms were detected in the DNA preparations. Two other unrelated species, Pichia philodendra and Candida salmanticensis also appear to have a linear mtDNA of similar organization. These linear DNAs (which we name Type 2 linear mtDNAs) are distinct from the previously described linear mtDNAs of yeasts whose termini are formed by a closed hairpin loop (Type 1 linear mtDNA). The terminal structure of C. parapsilosis mtDNA is reminiscent of the linear mitochondrial genomes of the ciliate Tetrahymena although, in the latter, the telomeric tandem repeat unit is considerably shorter.  相似文献   
80.
The cyclic environmental conditions brought about by the 24 h rotation of the earth have allowed the evolution of endogenous circadian clocks that control the temporal alignment of behaviour and physiology, including the uptake and processing of nutrients. Both metabolic and circadian regulatory systems are built upon a complex feedback network connecting centres of the central nervous system and different peripheral tissues. Emerging evidence suggests that circadian clock function is closely linked to metabolic homeostasis and that rhythm disruption can contribute to the development of metabolic disease. At the same time, metabolic processes feed back into the circadian clock, affecting clock gene expression and timing of behaviour. In this review, we summarize the experimental evidence for this bimodal interaction, with a focus on the molecular mechanisms mediating this exchange, and outline the implications for clock-based and metabolic diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号