首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1563篇
  免费   150篇
  国内免费   68篇
  1781篇
  2024年   5篇
  2023年   14篇
  2022年   36篇
  2021年   51篇
  2020年   23篇
  2019年   40篇
  2018年   37篇
  2017年   41篇
  2016年   56篇
  2015年   66篇
  2014年   80篇
  2013年   79篇
  2012年   106篇
  2011年   98篇
  2010年   76篇
  2009年   63篇
  2008年   75篇
  2007年   89篇
  2006年   84篇
  2005年   64篇
  2004年   51篇
  2003年   54篇
  2002年   56篇
  2001年   24篇
  2000年   29篇
  1999年   29篇
  1998年   13篇
  1997年   16篇
  1996年   12篇
  1995年   10篇
  1994年   13篇
  1993年   12篇
  1992年   23篇
  1991年   23篇
  1990年   22篇
  1989年   28篇
  1988年   28篇
  1987年   16篇
  1986年   15篇
  1985年   12篇
  1984年   17篇
  1983年   11篇
  1982年   10篇
  1981年   9篇
  1980年   7篇
  1979年   10篇
  1978年   7篇
  1977年   6篇
  1976年   7篇
  1973年   7篇
排序方式: 共有1781条查询结果,搜索用时 15 毫秒
91.
While polymer acceptors are promising fullerene alternatives in the fabrication of efficient bulk heterojunction (BHJ) solar cells, the range of efficient material systems relevant to the “all‐polymer” BHJ concept remains narrow, and currently limits the perspectives to meet the 10% efficiency threshold in all‐polymer solar cells. This report examines two polymer acceptor analogs composed of thieno[3,4‐c ]pyrrole‐4,6‐dione (TPD) and 3,4‐difluorothiophene ([2F]T) motifs, and their BHJ solar cell performance pattern with a low‐bandgap polymer donor commonly used with fullerenes (PBDT‐TS1; taken as a model system). In this material set, the introduction of a third electron‐deficient motif, namely 2,1,3‐benzothiadiazole (BT), is shown to (i) significantly narrow the optical gap (E opt) of the corresponding polymer (by ≈0.2 eV) and (ii) improve the electron mobility of the polymer by over two orders of magnitude in BHJ solar cells. In turn, the narrow‐gap P2TPDBT[2F]T analog (E opt = 1.7 eV) used as fullerene alternative yields high open‐circuit voltages (V OC) of ≈1.0 V, notable short‐circuit current values (J SC) of ≈11.0 mA cm−2, and power conversion efficiencies (PCEs) nearing 5% in all‐polymer BHJ solar cells. P2TPDBT[2F]T paves the way to a new, promising class of polymer acceptor candidates.  相似文献   
92.
The DNA mismatch repair (MMR) family functions in a variety of contexts to preserve genome integrity in most eukaryotes. In particular, members of the MMR family are involved in the process of meiotic recombination in germ cells. MMR gene mutations in mice result in meiotic disruption during prophase I, but the extent of this disruption often differs between male and female meiocytes. To address the role of MMR proteins specifically in female meiosis, we explored the progression of oocytes through prophase I and the meiotic divisions in mice harboring deletions in members of the MMR pathway (Mlh1, Mlh3, Exo1, and an ATPase-deficient variant of Mlh1, Mlh1(G67R)). The colocalization of MLH1 and MLH3, key proteins involved in stabilization of nascent crossovers, was dependent on intact heterodimer formation and was highly correlated with the ability of oocytes to progress through to metaphase II. The exception was Exo1(-/-) oocytes, in which normal MLH1/MLH3 localization was observed followed by failure to proceed to metaphase II. All mutant oocytes were able to resume meiosis after dictyate arrest, but they showed a dramatic decline in chiasmata (to less than 25% of normal), accompanied by varied progression through metaphase I. Taken together, these results demonstrate that MMR function is required for the formation and stabilization of crossovers in mammalian oocytes and that, in the absence of a functional MMR system, the failure to maintain chiasmata results in a reduced ability to proceed normally through the first and second meiotic divisions, despite near-normal levels of meiotic resumption after dictyate arrest.  相似文献   
93.
目的 在大肠杆菌中表达具有生物活性的rhBMP-4。方法 在不改变氨基酸序列的前提下,以全基因合成的方式对人BMP-4成熟肽基因全长进行定点突变,将之重组入pET-3c表达载体并转化至大肠杆菌BL21(DE)plysS。IPTG诱导和包涵体复性后,利用C2C12细胞横向成骨细胞分化实验以及小鼠肌袋异位骨形成实验检测其活性。 结果 获得0.348 kb的BMP-4 DNA序列,表达的目的蛋白主要以包涵体的形式存在。经纯化及复性后,体内与体外的活性检测表明rhBMP-4有良好的诱骨生成活性。结论 该方案能够实现rhBMP-4在大肠杆菌中的高效表达。  相似文献   
94.
In four isolated populations of parthenogenetic Caucasian rock lizard Lacerta unisexualis, variability of (TCC)n loci was examined using multilocus DNA fingerprinting. Unexpectedly high variability of (TCC)n microsatellites was found in all four populations. The mean similarity index was 0.825, which is higher than similarity estimates obtained for other mini- and microsatellite loci in L. unisexualis and parthenogenetic species L. dahli and L. armeniaca studied earlier. The high variation level of (TCC)n loci was shown to be at least partially associated with the presence of a diverged (TCC)n sequence fraction in the L. unisexualis genome. Mutations at some other genetically unstable (TCC)n loci may cause their structural diversity in populations of L. unisexualis.  相似文献   
95.
96.
Maternal stress and malnutrition modify intrauterine fetal development with impact on postnatal blood pressure, nutrient, water, and electrolyte metabolism. The present study explored the possible involvement of maternal serum- and glucocorticoid-inducible kinase (SGK)-1 in fetal programming of blood pressure. To this end, wild-type (sgk1(+/+)) male mice were mated with SGK1 knockout (sgk1(-/-)) female mice, and sgk1(-/-) males with sgk1(+/+) females, resulting in both cases in heterozygotic (sgk1(-/+)) offspring. Following prenatal protein restriction, the offspring of sgk1(+/+) mothers gained weight significantly slower and had significantly higher blood pressure after birth. Moreover, a sexual dimorphism was apparent in fasting blood glucose and plasma corticosterone concentrations, with higher levels in female offspring. In contrast, prenatal protein restriction of sgk1(-/-) mothers had no significant effect on postnatal weight gain, blood pressure, plasma glucose concentration, or corticosterone levels, irrespective of offspring sex. Plasma aldosterone concentration, urinary flow rates, and urinary excretions of Na(+) and K(+) were not significantly modified by either maternal genotype or nutritional manipulation. In conclusion, maternal signals mediated by SGK1 may play a decisive role in fetal programming of hypertension induced by prenatal protein restriction.  相似文献   
97.
Prostate carcinoma is one of the most common malignant tumors and has become a more common cancer in men. Previous studies demonstrated that evodiamine (EVO) exhibited anti-tumor activities on several cancers, but its effects on androgen-independent prostate cancer are unclear. In the present study, the action mechanisms of EVO on the growth of androgen-independent prostate cancer cells (DU145 and PC3 cells) were explored. EVO dramatically inhibited the growth and elevated cytotoxicity of DU145 and PC3 cells. The flow cytometric analysis of EVO-treated cells indicated a block of G2/M phase and an elevated level of DNA fragmentation. The G2/M arrest was accompanied by elevated Cdc2 kinase activity, an increase in expression of cyclin B1 and phosphorylated Cdc2 (Thr 161), and a decrease in expression of phosphorylated Cdc2 (Tyr 15), Myt-1, and interphase Cdc25C. TUNEL examination showed that EVO-induced apoptosis was observed at 72 h. EVO elevated the activities of caspase 3, 8, and 9 in DU145 cells, while in PC3 cells only the activities of caspase 3 and 9 were elevated. EVO also triggered the processing of caspase 3 and 9 in both DU145 and PC3 cells. We demonstrate that roscovitine treatment result in the reversion of G2/M arrest in response to EVO in both DU145 and PC3. However, inhibitory effect of roscovitine on EVO-induced apoptosis could only be observed in DU145 rather than PC3. In DU145, G2/M arrest might be a signal for initiation of EVO-triggered apoptosis. Whereas EVO-triggered PC3 apoptosis might be independent of G2/M arrest. These results suggested that EVO inhibited the growth of prostate cancer cell lines, DU145 and PC3, through an accumulation at G2/M phase and an induction of apoptosis.  相似文献   
98.
99.
13C-enriched deoxyribonucleosides have been isolated from the DNA of Algal cells grown in an atmosphere of 90% 13C-labelled carbon dioxide. The 13C enriched DNA was quantitatively hydrolysed with DNase I, snake venom phosphodiesterase I and alkaline phosphatase of intestinal mucosa. The resulting deoxyribonucleosides were separated by preparative reversed-phase high pressure liquid chromatography in 60 minutes with detection by ultraviolet absorption at 254 nm. The final products were obtained in milligram quantities in high purity and in high yield. The 1H resonances of the base and sugar protons of these deoxyribonucleosides appear as well resolved multiplets in the 600 MHz NMR spectrum, due to the extensive 1H-13C couplings. Similarly, the 13C resonances of these deoxyribonucleosides appear as multiplets in the 75.5 MHz 13C NMR spectrum, due to 13C-13C couplings. The 1H-13C and 13C-13C coupling constants were also measured and tabulated. The isotopic enrichment of 13C these deoxyribonucleosides was obtained by integration of the 1H and/or 13C NMR spectra. It was found that the enrichment varied from carbon to carbon and species to species in the range of 70-89%, suggesting differential uptake and assimilation of 90% 13CO2 during metabolism pathways. This protocol provides experimentally useful quantities of 13C-enriched deoxyribonucleosides, which may be incorporated into site-specifically labeled oligonucleotides by chemical synthesis.  相似文献   
100.
Chromosome duplication and transmission into daughter cells requires the precisely orchestrated binding and release of cohesin. We found that the Drosophila histone chaperone NAP1 is required for cohesin release and sister chromatid resolution during mitosis. Genome-wide surveys revealed that NAP1 and cohesin co-localize at multiple genomic loci. Proteomic and biochemical analysis established that NAP1 associates with the full cohesin complex, but it also forms a separate complex with the cohesin subunit stromalin (SA). NAP1 binding to cohesin is cell-cycle regulated and increases during G2/M phase. This causes the dissociation of protein phosphatase 2A (PP2A) from cohesin, increased phosphorylation of SA and cohesin removal in early mitosis. PP2A depletion led to a loss of centromeric cohesion. The distinct mitotic phenotypes caused by the loss of either PP2A or NAP1, were both rescued by their concomitant depletion. We conclude that the balanced antagonism between NAP1 and PP2A controls cohesin dissociation during mitosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号