首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   9篇
  2021年   2篇
  2018年   3篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   6篇
  2009年   1篇
  2008年   3篇
  2007年   6篇
  2006年   3篇
  2005年   10篇
  2004年   8篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   3篇
  1991年   1篇
  1978年   1篇
排序方式: 共有74条查询结果,搜索用时 187 毫秒
31.
32.
The commercial application of genetically modified industrial microorganisms has been problematic due to public concerns. We constructed a self-cloning sake yeast strain that overexpresses the ATF1 gene encoding alcohol acetyltransferase, to improve the flavor profile of Japanese sake. A constitutive yeast overexpression promoter, TDH3p, derived from the glyceraldehyde-3-phosphate dehydrogenase gene from sake yeast was fused to ATF1; and the 5 upstream non-coding sequence of ATF1 was further fused to TDH3p-ATF1. The fragment was placed on a binary vector, pGG119, containing a drug-resistance marker for transformation and a counter-selection marker for excision of unwanted DNA. The plasmid was integrated into the ATF1 locus of a sake yeast strain. This integration constructed tandem repeats of ATF1 and TDH3p-ATF1 sequences, between which the plasmid was inserted. Loss of the plasmid, which occurs through homologous recombination between either the TDH3p downstream ATF1 repeats or the TDH3p upstream repeat sequences, was selected by growing transformants on counter-selective medium. Recombination between the downstream repeats led to reversion to a wild type strain, but that between the upstream repeats resulted in a strain that possessed TDH3p-ATF1 without the extraneous DNA sequences. The self-cloning TDH3p-ATF1 yeast strain produced a higher amount of isoamyl acetate. This is the first expression-controlled self-cloning industrial yeast.  相似文献   
33.
To establish a system for over-production of PSII-L protein which is a component of photosystem II (PSII) complex, a plasmid designated as pMAL-psbL was constructed and expressed in Escherichia coli JM109. A fusion protein of PSII-L and maltose-binding proteins (53 kDa on SDS-PAGE) was accumulated in E. coli cells to a level of 10% of the total protein upon isopropyl--D-thiogalactopyranoside (IPTG) induction. The carboxyl-terminal part of 5.0 kDa was cleaved from the fusion protein and purified by an anion exchange column chromatography in the presence of detergents. This 5.0 kDa protein was identified as PSII-L by amino-terminal amino acid sequence analysis and the chromatographic behavior on an anion exchange gel. A few types of mutant PSII-L were also prepared by the essentially same procedure except for using plasmids which contain given mutations in psbL gene. Plastoquinone-9 (PQ-9) depleted PSII reaction center core complex consisting of D1, D2, CP47, cytochrome b-559 (cyt b-559), PSII-I and PSII-W was reconstituted with PQ-9 and digalactosyldiglyceride (DGDG) together with the wild-type or mutant PSII-L produced in E. coli or isolated PSII-L from spinach. Significant difference between the wild-type PSII-L proteins from E. coli and spinach was not recognized in the effectiveness to recover the photo-induced electron transfer activity in the resulting complexes. The analysis of stoichiometry of PQ-9 per reaction center in the PQ-9 reconstituted PS II revealed that two molecules of PQ-9 were reinserted into a reaction center independent of the presence or absence of PSII-L. These results suggest that PSII-L recovers the electron transfer activity in the reconstituted RC by a mechanism different from the stabilization of PQ-9 in the QA site of PSII. Ubiquinone-10 (UQ-10), but not plastoquinone-2 (PQ-2), substituted PQ-9 for recovering the PSII-L supported electron transfer activity in the reconstituted PSII reaction center complexes. The results obtained with the mutant PSII-L proteins revealed that the carboxyl terminal part rather than amino terminal part of PSII-L is crucial for recovering the electron transfer activity in the reconstituted complexes.  相似文献   
34.
Growing evidence suggests that free radicals derived from polymorphonuclear leukocytes (PMNs) play an important role in myocardial ischemia-reperfusion injury. To elucidate the cellular mechanism by which activated PMNs exacerbate ischemic myocardial damage, we investigated the extent of cell injury, assessed by the morphological deterioration, free radical generation, and lipid peroxidation in mouse embryo myocardial cells coincubated with activated PMNs. The generation of PMN-derived free radicals was related to the extent of myocardial cell injury. When myocardial cell sheets were subjected to hypoxia and glucose-free media, myocardial cells were injured (cristalysis in the mitochondria and disruption of the sarcolemma) after adding various PMN activators, and the injury extended to the adjacent cells. Chemiluminescent emission and production of thiobarbituric acid-reactive substances in the coincubated cells increased markedly compared with myocardial cells or PMNs alone. The augmented lipid peroxidation coincided with the progression of myocardial cell injury. Catalase inhibited the myocardial cell injury by 52%, the chemiluminescence by 46%, and lipid peroxidation by 50%, whereas superoxide dismutase exhibited less pronounced inhibition. These results indicate that a chain reaction of lipid peroxidation in myocardial cells induced by PMN-derived free radicals closely correlates with membrane damage and contributes to the propagation of irreversible myocardial cell damage.  相似文献   
35.
The process of ethanol fermentation has a long history in the production of alcoholic drinks, but much larger scale production of ethanol is now required to enable its use as a substituent of gasoline fuels at 3%, 10%, or 85% (referred to as E3, E10, and E85, respectively). Compared with fossil fuels, the production costs are a major issue for the production of fuel ethanol. There are a number of possible approaches to delivering cost-effective fuel ethanol production from different biomass sources, but we focus in our current report on high-temperature fermentation using a newly isolated thermotolerant strain of the yeast Kluyveromyces marxianus. We demonstrate that a 5°C increase only in the fermentation temperature can greatly affect the fuel ethanol production costs. We contend that this approach may also be applicable to the other microbial fermentations systems and propose that thermotolerant mesophilic microorganisms have considerable potential for the development of future fermentation technologies.  相似文献   
36.
Various auxotrophic mutants of diploid heterothallic Japanese sake strains of Saccharomyces cerevisiae were utilized for selecting mating-competent diploid isolates. The auxotrophic mutants were exposed to ultraviolet (UV) irradiation and crossed with laboratory haploid tester strains carrying complementary auxotrophic markers. Zygotes were then selected on minimal medium. Sake strains exhibiting a MATa or MATα mating type were easily obtained at high frequency without prior sporulation, suggesting that the UV irradiation induced homozygosity at the MAT locus. Flow cytometric analysis of a hybrid showed a twofold higher DNA content than the sake diploid parent, consistent with tetraploidy. By crossing strains of opposite mating type in all possible combinations, a number of hybrids were constructed. Hybrids formed in crosses between traditional sake strains and between a natural nonhaploid isolate and traditional sake strains displayed equivalent fermentation ability without any apparent defects and produced comparable or improved sake. Isolation of mating-competent auxotrophic mutants directly from industrial yeast strains allows crossbreeding to construct polyploids suitable for industrial use without dependence on sporulation.  相似文献   
37.
It has been reported that beta2-agonists may potentially exert some anti-inflammatory action in addition to bronchodilation that may contribute to their beneficial effects on asthma control. Bronchial epithelial cells are well known to respond to a range of stimuli by producing various biologically active mediators that can influence airway inflammation. RANTES (regulated on activation, normal T cells expressed and secreted) plays an important role in the pathophysiology of airway inflammation of asthmatics through its chemotactic activity for eosinophils. In this study, the authors investigated whether cytokine-induced RANTES release from BEAS-2B human bronchial epithelial cells could be modulated by beta-agonist isoproterenol (ISO). The possible involvement of c-jun N-terminal kinase (JNK) pathway was also studied. Combination of tumor necrosis factor-alpha and interleukin-1beta (cytokine mix) increased RANTES release from BEAS-2B cells and stimulated JNK activity. Similar to JNK inhibitor SP600125, ISO inhibited not only the production of RANTES but also the activation of JNK pathway in cytokine mix-stimulated BEAS-2B cells. The effect of ISO was mediated by the beta2-adrenoceptor, since it was blocked by ICI 118,551, a selective beta2-receptor antagonist, but not by atenolol, a selective beta1-receptor antagonist. Adenylyl cyclase activator forskolin reproduced the effects of ISO. Isoproterenol was found to inhibit the release of RANTES from the human bronchial epithelial cells, at least in part, through the inhibition of JNK signaling pathway.  相似文献   
38.
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号