首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1289篇
  免费   85篇
  2022年   4篇
  2021年   18篇
  2020年   10篇
  2019年   10篇
  2018年   15篇
  2017年   22篇
  2016年   27篇
  2015年   41篇
  2014年   41篇
  2013年   60篇
  2012年   52篇
  2011年   72篇
  2010年   44篇
  2009年   41篇
  2008年   88篇
  2007年   72篇
  2006年   57篇
  2005年   68篇
  2004年   71篇
  2003年   58篇
  2002年   46篇
  2001年   54篇
  2000年   57篇
  1999年   38篇
  1998年   18篇
  1997年   18篇
  1996年   5篇
  1995年   12篇
  1994年   8篇
  1993年   7篇
  1992年   26篇
  1991年   29篇
  1990年   16篇
  1989年   17篇
  1988年   14篇
  1987年   18篇
  1986年   10篇
  1985年   11篇
  1984年   6篇
  1983年   14篇
  1982年   10篇
  1981年   5篇
  1980年   6篇
  1979年   8篇
  1978年   5篇
  1977年   8篇
  1974年   5篇
  1973年   5篇
  1972年   6篇
  1966年   5篇
排序方式: 共有1374条查询结果,搜索用时 31 毫秒
91.
Background/PurposeLysine-specific gingipain (Kgp) is a virulence factor secreted from Porphyromonas gingivalis (P. gingivalis), a major etiological bacterium of periodontal disease. Keratin intermediate filaments maintain the structural integrity of gingival epithelial cells, but are targeted by Kgp to produce a novel cytokeratin 6 fragment (K6F). We investigated the release of K6F and its induction of cytokine secretion.MethodsK6F present in the gingival crevicular fluid of periodontal disease patients and in gingipain-treated rat gingival epithelial cell culture supernatants was measured by matrix-assisted laser desorption/ionization time-of-flight mass spectrometer-based rapid quantitative peptide analysis using BLOTCHIP. K6F in gingival tissues was immunostained, and cytokeratin 6 protein was analyzed by immunofluorescence staining and flow cytometry. Activation of MAPK in gingival epithelial cells was evaluated by immunoblotting. ELISA was used to measure K6F and the cytokines release induced by K6F. Human gingival fibroblast migration was assessed using a Matrigel invasion chamber assay.ResultsWe identified K6F, corresponding to the C-terminus region of human cytokeratin 6 (amino acids 359–378), in the gingival crevicular fluid of periodontal disease patients and in the supernatant from gingival epithelial cells cultured with Kgp. K6F antigen was distributed from the basal to the spinous epithelial layers in gingivae from periodontal disease patients. Cytokeratin 6 on gingival epithelial cells was degraded by Kgp, but not by Arg-gingipain, P. gingivalis lipopolysaccharide or Actinobacillus actinomycetemcomitans lipopolysaccharide. K6F, but not a scrambled K6F peptide, induced human gingival fibroblast migration and secretion of interleukin (IL)-6, IL-8 and monocyte chemoattractant protein-1. These effects of K6F were mediated by activation of p38 MAPK and Jun N-terminal kinase, but not p42/44 MAPK or p-Akt.ConclusionKgp degrades gingival epithelial cell cytokeratin 6 to K6F that, on release, induces invasion and cytokine secretion by human gingival fibroblasts. Thus, Kgp may contribute to the development of periodontal disease.  相似文献   
92.
Gorlin syndrome (GS) is an autosomal dominant disorder that predisposes affected individuals to developmental defects and tumorigenesis, and caused mainly by heterozygous germline PTCH1 mutations. Despite exhaustive analysis, PTCH1 mutations are often unidentifiable in some patients; the failure to detect mutations is presumably because of mutations occurred in other causative genes or outside of analyzed regions of PTCH1, or copy number alterations (CNAs). In this study, we subjected a cohort of GS-affected individuals from six unrelated families to next-generation sequencing (NGS) analysis for the combined screening of causative alterations in Hedgehog signaling pathway-related genes. Specific single nucleotide variations (SNVs) of PTCH1 causing inferred amino acid changes were identified in four families (seven affected individuals), whereas CNAs within or around PTCH1 were found in two families in whom possible causative SNVs were not detected. Through a targeted resequencing of all coding exons, as well as simultaneous evaluation of copy number status using the alignment map files obtained via NGS, we found that GS phenotypes could be explained by PTCH1 mutations or deletions in all affected patients. Because it is advisable to evaluate CNAs of candidate causative genes in point mutation-negative cases, NGS methodology appears to be useful for improving molecular diagnosis through the simultaneous detection of both SNVs and CNAs in the targeted genes/regions.  相似文献   
93.
Although L-asparaginase related hyperglycemia is well known adverse event, it is not studied whether the profile of this adverse event is affected by intensification of L-asparaginase administration. Here, we analyzed the profile of L-asparaginase related hyperglycemia in a 1,176 patients with pediatric acute lymphoblastic leukemia treated according to the Japan Association of Childhood Leukemia Study ALL-02 protocol using protracted L-asparaginase administration in maintenance phase. We determined that a total of 75 L-asparaginase related hyperglycemia events occurred in 69 patients. Although 17 events (17/1176, 1.4%) developed in induction phase, which was lower incidence than those (10–15%) in previous reports, 45 events developed during the maintenance phase with protracted L-asparaginase administration. Multivariate analysis showed that older age at onset (≥10 years) was a sole independent risk factor for L-asparaginase-related hyperglycemia (P<0.01), especially in maintenance phase. Contrary to the previous reports, obesity was not associated with L-asparaginase-related hyperglycemia. These findings suggest that protracted administration of L-asparaginase is the risk factor for hyperglycemia when treating adolescent and young adult acute lymphoblastic leukemia patients.  相似文献   
94.
Rice (Oryza sativa) endosperm accumulates a massive amount of storage starch and storage proteins during seed development. However, little is known about the regulatory system involved in the production of storage substances. The rice flo2 mutation resulted in reduced grain size and starch quality. Map-based cloning identified FLOURY ENDOSPERM2 (FLO2), a member of a novel gene family conserved in plants, as the gene responsible for the rice flo2 mutation. FLO2 harbors a tetratricopeptide repeat motif, considered to mediate a protein-protein interactions. FLO2 was abundantly expressed in developing seeds coincident with production of storage starch and protein, as well as in leaves, while abundant expression of its homologs was observed only in leaves. The flo2 mutation decreased expression of genes involved in production of storage starch and storage proteins in the endosperm. Differences between cultivars in their responsiveness of FLO2 expression during high-temperature stress indicated that FLO2 may be involved in heat tolerance during seed development. Overexpression of FLO2 enlarged the size of grains significantly. These results suggest that FLO2 plays a pivotal regulatory role in rice grain size and starch quality by affecting storage substance accumulation in the endosperm.  相似文献   
95.
Changes in the amount of heat shock-related ubiquitinated proteins in Chlamydomonas were investigated during the cell cycle and gamete induction. In a division-synchronized culture induced by periodic illumination, the amount of the 28-kDa ubiquitinated protein increased during the dark phase. This increase correlated with the increase of total DNA. Such an increase was repressed when nuclear DNA replication was inhibited with aphidicolin. These results suggest that ubiquitination to form the 28-kDa protein is involved in nuclear DNA replication or during the cell cycle. The amount of 31-kDa ubiquitinated protein gradually increased throughout the light phase and decreased in the dark phase. The amount of 28-kDa ubiquitinated protein also increased during gamete induction caused by nitrogen starvation, while that of the 31-kDa did not. These results suggest that the change of ubiquitination of 28-kDa protein mat play a fundamental role in the cell cycle and gamete induction in Chlamydomonas.  相似文献   
96.
Dihydrosphingosine C4 hydroxylase is a key enzyme in the biosynthesis of phytosphingosine, a major constituent of sphingolipids in plants and yeasts. The rice genome contains five homologue genes for dihydrosphingosine C4 hydroxylase, DSH1-DSH5, whose gene products show high degrees of homology to the yeast counterpart, SUR2. Among them, expression of DSH1, DSH2 and DSH4 was detected, and DSH1 and DSH4 complement the yeast sur2 mutation. The DSH1 gene was specifically and abundantly expressed in vascular bundles and apical meristems. In particular, very strong expression was detected in the stigmas of flowers. Repression of DSH1 expression by the antisense gene or RNA interference (RNAi) resulted in a severe reduction of fertility. In the transformants in which DSH1 expression was suppressed, significantly increased expression of DSH2 was found in leaves but not in pistils, suggesting that there was tissue-specific correlation between DSH1 and DSH2 expression. Our results indicate that the product of DSH1 may be involved in plant viability or reproductive processes, and that the phenotype of sterility is apparently caused by loss of function of DSH1 in the stigma. It is also suggested that there is a complex mechanism controlling the tissue-specific expression of the DSH1 gene.  相似文献   
97.
98.
A medium for the in vitro culture of Cryptocaryon irritans, which is an obligatorily parasitic ciliate of marine teleosts and causes 'white spot disease', was developed. The medium consisted of a layer of cultured fish cells (FHM), with an agarose gel layer covering the cell layer. The agarose gel contained 0.22% agarose, 10% fetal calf serum, 100 I.U. ml(-1) Penicillin G potassium and 100 microg ml(-1) streptomycin sulphate. Theronts of C. irritans transformed to trophonts and grew to 180 microm in mean length in the medium, although they gradually decreased in number. When trophonts fully developed in medium were transferred into seawater 4 d after inoculation, approximately 70% of them transformed to encysted tomonts and released theronts. When fish were challenged with theronts obtained from in vitro-raised parasites, approximately 40% of the theronts were recovered from fish, indicating comparative infectivity of in vitro-raised theronts to those of in vivo-raised theronts. This is the first report that C. irritans fully developed in vitro and its entire life cycle was completed without a host fish.  相似文献   
99.
Persistent and stable expression of foreign genes has been achieved in mammalian cells by integrating the genes into the host chromosomes. However, this approach has several shortcomings in practical applications. For example, large scale production of protein pharmaceutics frequently requires laborious amplification of the inserted genes to optimize the gene expression. The random chromosomal insertion of exogenous DNA also results occasionally in malignant transformation of normal tissue cells, raising safety concerns in medical applications. Here we report a novel cytoplasmic RNA replicon capable of expressing installed genes stably without chromosome insertion. This system is based on the RNA genome of a noncytopathic variant Sendai virus strain, Cl.151. We found that this variant virus establishes stable symbiosis with host cells by escaping from retinoic acid-inducible gene I-interferon regulatory factor 3-mediated antiviral machinery. Using a cloned genome cDNA of Sendai virus Cl.151, we developed a recombinant RNA installed with exogenous marker genes that was maintained stably in the cytoplasm as a high copy replicon (about 4 x 10(4) copies/cell) without interfering with normal cellular function. Strong expression of the marker genes persisted for more than 6 months in various types of cultured cells and for at least two months in rat colonic mucosa without any apparent side effects. This stable RNA replicon is a potentially valuable genetic platform for various biological applications.  相似文献   
100.
Src-family kinases that localize to the cytoplasmic side of cellular membranes through lipid modification play a role in signaling events including membrane trafficking. Macropinocytosis is an endocytic process for solute uptake by large vesicles called macropinosomes. Although macropinosomes can be visualized following uptake of fluorescent macromolecules, little is known about the dynamics of macropinosomes in living cells. Here, we show that constitutive c-Src expression generates macropinosomes in a kinase-dependent manner. Live-cell imaging of GFP-tagged c-Src (Src-GFP) reveals that c-Src associates with macropinosomes via its N-terminus continuously from their generation at membrane ruffles, through their centripetal trafficking, to fusion with late endosomes and lysosomes. Fluorescence recovery after photobleaching (FRAP) of Src-GFP shows that Src-GFP is rapidly recruited to macropinosomal membranes from the plasma membrane and intracellular organelles through vesicle transport even in the presence of a protein synthesis inhibitor. Furthermore, using a HeLa cell line overexpressing inducible c-Src, we show that following stimulation with epidermal growth factor (EGF), high levels of c-Src kinase activity promote formation of macropinosomes associated with the lysosomal compartment. Unlike c-Src, Lyn and Fyn, which are palmitoylated Src kinases, only minimally induce macropinosomes, although a Lyn mutant in which the palmitoylation site is mutated efficiently induces macropinocytosis. We conclude that kinase activity of nonpalmitoylated Src kinases including c-Src may play an important role in the biogenesis and trafficking of macropinosomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号