首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2081篇
  免费   128篇
  2023年   15篇
  2022年   25篇
  2021年   40篇
  2020年   32篇
  2019年   27篇
  2018年   62篇
  2017年   34篇
  2016年   57篇
  2015年   96篇
  2014年   95篇
  2013年   141篇
  2012年   167篇
  2011年   127篇
  2010年   73篇
  2009年   73篇
  2008年   96篇
  2007年   114篇
  2006年   95篇
  2005年   87篇
  2004年   75篇
  2003年   57篇
  2002年   57篇
  2001年   49篇
  2000年   39篇
  1999年   26篇
  1998年   24篇
  1997年   19篇
  1996年   10篇
  1995年   19篇
  1994年   9篇
  1992年   25篇
  1991年   35篇
  1990年   20篇
  1989年   10篇
  1988年   20篇
  1987年   25篇
  1986年   21篇
  1985年   21篇
  1984年   21篇
  1983年   11篇
  1982年   12篇
  1981年   10篇
  1979年   17篇
  1978年   9篇
  1977年   9篇
  1976年   10篇
  1975年   17篇
  1974年   11篇
  1973年   10篇
  1968年   7篇
排序方式: 共有2209条查询结果,搜索用时 31 毫秒
991.
In this paper, a three-tier model of phytoplankton, zooplankton and nutrient is considered and stability of different equilibrium points is analyzed along with Hopf-bifurcation around coexisting equilibrium point. Here, we have assumed toxication process as the guiding factor for bloom formation as well as its termination and this process is incorporated into our model by choosing the zooplankton grazing function as a Monod–Haldane function due to the phytoplankton toxicity. Extensive numerical simulations have been performed to validate the analytical findings and these simulation work reveal the chaotic oscillation exhibited by the model system for certain choice of the parameter values.  相似文献   
992.
SPINDLY (SPY) is an important regulator of plant development, and consists of an N-half tetratricopeptide repeat (TPR) domain containing 10 TPR motifs and a C-half catalytic domain, similar to O-GlcNAc transferase (OGT) of animals. The best characterised role of SPY is a negative regulator of GA signalling, and all known spy alleles have been isolated based on increased GA response. Of the eight alleles that directly affect the TPR domain, all alter TPRs 6, 8 and/or 9. To test the hypothesis that a subset of TPRs, including 6, 8 and 9, are both essential and sufficient for the regulation of GA response, we overexpressed the full-length barley (Hordeum vulgare L.) SPY protein (HvSPY) and several deletion mutants in barley aleurone cells and in Arabidopsis wild type (WT) and spy-4 plants. Transient assays in barley aleurone cells, that also express endogenous HvSPY, demonstrated that introduced HvSPY and HvTPR inhibited GA3-induced α-amylase expression. With the exception of HvSPYΔ1–5, the other deletion proteins were partially active in the barley assay, including HvSPYΔ6–9 which lacks TPRs 6, 8 and 9. In Arabidopsis, analysis of seed germination under a range of conditions revealed that 35S:HvSPY increased seed dormancy. Hvspy-2, which lacks parts of the eighth and ninth TPRs, was able to partially complement all aspects of the spy-4 phenotype. In the presence of AtSPY, 35S:HvTPR caused some phenotypes consistent with a decrease in GA signalling, including increased seed sensitivity to paclobutrazol and delayed flowering. These plants also possessed distorted leaf morphology and altered epidermal cell shape. Thus, despite genetic analysis demonstrating that TPRs 6, 8 and 9 are required for regulation of GA signalling, our results suggest that these TPRs are neither absolutely essential nor sufficient for SPY activity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
993.
Protein synthesis is often regulated at the level of initiation of translation, making it a critical step. This regulation occurs by both the cis‐regulatory elements, which are located in the 5′‐ and 3′‐UTRs (untranslated regions), and trans‐acting factors. A breakdown in this regulation machinery can perturb cellular metabolism, leading to various physiological abnormalities. The highly structured UTRs, along with features such as GC‐richness, upstream open reading frames and internal ribosome entry sites, significantly influence the rate of translation of mRNAs. In this review, we discuss how changes in the cis‐regulatory sequences of the UTRs, for example, point mutations and truncations, influence expression of specific genes at the level of translation. Such modifications may tilt the physiological balance from healthy to diseased states, resulting in conditions such as hereditary thrombocythaemia, breast cancer, fragile X syndrome, bipolar affective disorder and Alzheimer's disease. This information tends to establish the crucial role of UTRs, perhaps as much as that of coding sequences, in health and disease.  相似文献   
994.
Ligands for only two human olfactory receptors are known. One of them, OR1D2, binds to Bourgeonal, a volatile chemical constituent of the fragrance of the mythical flower, Lily of the valley or Our Lady’s tears, Convallaria majalis (also the national flower of Finland). OR1D2, OR1D4 and OR1D5 are three full-length olfactory receptors present in an olfactory locus in the human genome. These receptors are more than 80% identical in DNA sequences and have 108 base pair mismatches among them. Apparently, these mismatch positions show no striking pattern using computer pattern recognition tools. In an attempt to find a mathematical rule in those mismatches, we find that an L-system generated sequence can be inserted into the OR1D2 subfamily-specific star model and novel full-length olfactory receptors can be generated. This remarkable mathematical principle could be utilized for making new subfamily olfactory receptor members from any olfactory receptor subfamily. The aroma and electronic nose industry might utilize this rule in future.  相似文献   
995.
996.
INTRODUCTION: The incidence of Barrett esophageal adenocarcinoma (BEAC) has been increasing at an alarming rate in western countries. In this study, we have evaluated the therapeutic potential of sulforaphane (SFN), an antioxidant derived from broccoli, in BEAC. METHODS: BEAC cells were treated with SFN, alone or in combination with chemotherapeutic, paclitaxel, or telomerase-inhibiting agents (MST-312, GRN163L), and live cell number determined at various time points. The effect on drug resistance/chemosensitivity was evaluated by rhodamine efflux assay. Apoptosis was detected by annexin V labeling and Western blot analysis of poly(ADP-ribose) polymerase cleavage. Effects on genes implicated in cell cycle and apoptosis were determined by Western blot analyses. To evaluate the efficacy in vivo, BEAC cells were injected subcutaneously in severe combined immunodeficient mice, and after the appearance of palpable tumors, mice were treated with SFN. RESULTS: SFN induced both time- and dose-dependent decline in cell survival, cell cycle arrest, and apoptosis. The treatment with SFN also suppressed the expression of multidrug resistance protein, reduced drug efflux, and increased anticancer activity of other antiproliferative agents including paclitaxel. A significant reduction in tumor volume was also observed by SFN in a subcutaneous tumor model of BEAC. Anticancer activity could be attributed to the induction of caspase 8 and p21 and down-regulation of hsp90, a molecular chaperon required for activity of several proliferation-associated proteins. CONCLUSIONS: These data indicate that a natural product with antioxidant properties from broccoli has great potential to be used in chemoprevention and treatment of BEAC.  相似文献   
997.
Oxidation of ammonia, the first step in nitrification, is carried out in soil by bacterial and archaeal ammonia oxidizers and recent studies suggest possible selection for the latter in low-ammonium environments. In this study, we investigated the selection of ammonia-oxidizing archaea and bacteria in wetland soil vertical profiles at two sites differing in terms of the ammonium supply rate, but not significantly in terms of the groundwater level. One site received ammonium through decomposition of organic matter, while the second, polluted site received a greater supply, through constant leakage of an underground septic tank. Soil nitrification potential was significantly greater at the polluted site. Quantification of amoA genes demonstrated greater abundance of bacterial than archaeal amoA genes throughout the soil profile at the polluted site, whereas bacterial amoA genes at the unpolluted site were below the detection limit. At both sites, archaeal, but not the bacterial community structure was clearly stratified with depth, with regard to the soil redox potential imposed by groundwater level. However, depth-related changes in the archaeal community structure may also be associated with physiological functions other than ammonia oxidation.  相似文献   
998.
We have examined the role of gibberellins (GAs) in plant development by expression of the pea GA 2-oxidase2 ( PsGA2ox2 ) cDNA, which encodes a GA inactivating enzyme, under the control of the MEDEA (MEA) promoter. Expression of MEA:PsGA2ox2 in Arabidopsis caused seed abortion, demonstrating that active GAs in the endosperm are essential for normal seed development. MEA:PsGA2ox2 plants had reduced ovule number per ovary and exhibited defects in phyllotaxy and leaf morphology which were partly suppressed by GA treatment. The leaf architecture and phyllotaxy defects of MEA:PsGA2ox2 plants were also restored by sly1-d which reduces DELLA protein stability to increase GA response. MEA:PsGA2ox2 seedlings had increased expression of the KNOTTED1 -like homeobox (KNOX) genes, BP , KNAT2 and KNAT6 , which are known to control plant architecture. The expression of KNOX genes is also altered in wild-type plants treated with GA. These results support the conclusion that GAs can suppress the effects of elevated KNOX gene expression, and raise the possibility that localized changes in GA levels caused by PsGA2ox2 alter the expression of KNOX genes to modify plant architecture.  相似文献   
999.
Background aimsSpinal cord injury (SCI) is a medically untreatable condition for which stem cells have created hope. Pre-clinical and clinical studies have established that these cells are safe for transplantation. The dose dependency, survivability, route of administration, cell migration to injury site and effect on sensory and motor behavior in an SCI-induced paraplegic model were studied.MethodsA spinal cord contusion injury model was established in rats. Bone marrow (BM) mesenchymal stromal cells (MSC) were tagged to facilitate tracing in vivo. Two different doses (2 and 5 million cells/kg body weight) and two different routes of infusion (site of injury and lumbar puncture) were tested during and after the spinal shock period. The animals were tested post-transplantation for locomotor capacity, motor control, sensory reflex, posture and body position. Stem cell migration was observed 1 month post-transplantation in spinal cord sections.ResultsThe overall results demonstrated that transplantation of BM MSC significantly improved the locomotor and sensory behavior score in the experimental group compared with the sham control group, and these results were dose dependent. All the infused stem cells could be visualized at the site of injury and none was visualized at the injected site. This indicated that the cells had survived in vivo, were probably chemoattracted and had migrated to the lesion site.ConclusionsMSC transplanted with a lumbar puncture method migrate to the site of injury and are the most suitable for SCI healing. These cells demonstrate a dose-dependent effect and promote functional recovery when injected during or after the spinal shock period.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号