首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   17篇
  2023年   1篇
  2022年   4篇
  2021年   14篇
  2020年   3篇
  2019年   8篇
  2018年   4篇
  2017年   6篇
  2016年   10篇
  2015年   11篇
  2014年   10篇
  2013年   13篇
  2012年   13篇
  2011年   18篇
  2010年   15篇
  2009年   15篇
  2008年   16篇
  2007年   9篇
  2006年   17篇
  2005年   21篇
  2004年   12篇
  2003年   10篇
  2002年   10篇
  2001年   4篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1983年   1篇
  1978年   1篇
排序方式: 共有267条查询结果,搜索用时 31 毫秒
171.
When old leaves are shed, part of the nitrogen in the leaf is retranslocated to new leaves. This retranslocation will increase the whole-plant carbon gain when daily C gain : leaf N ratio (daily photosynthetic N-use efficiency, NUE) in the old leaf, expressed as a fraction of NUE in the new leaf, becomes lower than the fraction of leaf N that is resorbed before shedding (R(N)). We examined whether plants shed their leaves to increase the whole-plant C gain in accord with this criterion in a dense stand of an annual herb, Xanthium canadense, grown under high (HN) and low (LN) nitrogen availability. The NUE of a leaf at shedding expressed as a fraction of NUE in a new leaf was nearly equal to the R(N) in the LN stand, but significantly lower than the R(N) in the HN stand. Thus shedding of old leaves occurred as expected in the LN stand, whereas in the HN stand, shedding occurred later than expected. Sensitivity analyses showed that the decline in NUE of a leaf resulted primarily from a reduction in irradiance in the HN stand. On the other hand, it resulted from a reduction in irradiance and also in light-saturated photosynthesis : leaf N content ratio (potential photosynthetic NUE) in the LN stand.  相似文献   
172.
Factor XI (FXI) binds specifically and reversibly to high affinity sites on the surface of stimulated platelets (Kd app of approximately 10 nm; Bmax of approximately 1,500 sites/platelet) utilizing residues exposed on the Apple 3 domain in the presence of high molecular weight kininogen and Zn2+ or prothrombin and Ca2+. Because the FXI receptor in the platelet membrane is contained within the glycoprotein Ibalpha subunit of the glycoprotein Ib-IX-V complex (Baglia, F. A., Badellino, K. O., Li, C. Q., Lopez, J. A., and Walsh, P. N. (2002) J. Biol. Chem. 277, 1662-1668), we utilized mocarhagin, a cobra venom metalloproteinase, to generate a fragment (His1-Glu282) of glycoprotein Ibalpha that contains the leucine-rich repeats of the NH2-terminal globular domain and excludes the macroglycopeptide portion of glycocalicin, the soluble extracytoplasmic portion of glycoprotein Ibalpha. This fragment was able to compete with FXI for binding to activated platelets (Ki of 3.125 +/- 0.25 nm) with a potency similar to that of intact glycocalicin (Ki of 3.72 +/- 0.30 nm). However, a synthetic glycoprotein Ibalpha peptide, Asp269-Asp287, containing a thrombin binding site had no effect on the binding of FXI to activated platelets. Moreover, the binding of 125I-labeled thrombin to glycocalicin was unaffected by the presence of FXI at concentrations up to 10(-5) m. The von Willebrand factor A1 domain, which binds the leucine-rich repeats, inhibited the binding of FXI to activated platelets. Thus, we examined the effect of synthetic peptides of each of the seven leucine-rich repeats on the binding of 125I-FXI to activated platelets. All leucine-rich repeat (LRR) peptides derived from glycoprotein Ibalpha were able to inhibit FXI binding to activated platelets in the following order of decreasing potency: LRR7, LRR1, LRR4, LRR5, LRR6, LRR3, and LRR2. However, the leucine-rich repeat synthetic peptides derived from glycoprotein Ibbeta and Toll protein had no effect. We conclude that FXI binds to glycoprotein Ibalpha at sites comprising the leucine-rich repeat sequences within the NH2-terminal globular domain that are separate and distinct from the thrombin-binding site.  相似文献   
173.
Experimental hauls of a small seine for juvenile yellowfin goby, Acanthogobius flavimanus, were carried out on a tidal mudflat in the Shinhama Lagoon, central Japan, between April and June 2001. Immediately before each haul, visual censuses were conducted to evaluate whether juvenile densities estimated from the catches accurately reflected real densities in the area. The densities estimated from the net samples were significantly lower than those determined by visual censuses throughout the study period. The catch efficiency of the small seine for juveniles of ca. 17–40mm in standard length was estimated as 23–71%, a negative relationship between efficiency and fish length being found.  相似文献   
174.
A model of dynamics of leaves and nitrogen is developed to predict the effect of environmental and ecophysiological factors on the structure and photosynthesis of a plant canopy. In the model, leaf area in the canopy increases by the production of new leaves, which is proportional to the canopy photosynthetic rate, with canopy nitrogen increasing with uptake of nitrogen from soil. Then the optimal leaf area index (LAI; leaf area per ground area) that maximizes canopy photosynthesis is calculated. If leaf area is produced in excess, old leaves are eliminated with their nitrogen as dead leaves. Consequently, a new canopy having an optimal LAI and an optimal amount of nitrogen is obtained. Repeating these processes gives canopy growth. The model provides predictions of optimal LAI, canopy photosynthetic rates, leaf life span, nitrogen use efficiency, and also the responses of these factors to changes in nitrogen and light availability. Canopies are predicted to have a larger LAI and a higher canopy photosynthetic rate at a steady state under higher nutrient and/or light availabilities. Effects of species characteristics, such as photosynthetic nitrogen use efficiency and leaf mass per area, are also evaluated. The model predicts many empirically observed patterns for ecophysiological traits across species.  相似文献   
175.
We have used GST pulldowns from A431 cell cytosol to identify three new binding partners for the gamma-adaptin appendage: Snx9, ARF GAP1, and a novel ENTH domain-containing protein, epsinR. EpsinR is a highly conserved protein that colocalizes with AP-1 and is enriched in purified clathrin-coated vesicles. However, it does not require AP-1 to get onto membranes and remains membrane-associated in AP-1-deficient cells. Moreover, although epsinR binds AP-1 via its COOH-terminal domain, its NH(2)-terminal ENTH domain can be independently recruited onto membranes, both in vivo and in vitro. Brefeldin A causes epsinR to redistribute into the cytosol, and recruitment of the ENTH domain requires GTPgammaS, indicating that membrane association is ARF dependent. In protein-lipid overlay assays, the epsinR ENTH domain binds to PtdIns(4)P, suggesting a possible mechanism for ARF-dependent recruitment onto TGN membranes. When epsinR is depleted from cells by RNAi, cathepsin D is still correctly processed intracellularly to the mature form. This indicates that although epsinR is likely to be an important component of the AP-1 network, it is not necessary for the sorting of lysosomal enzymes.  相似文献   
176.
Isocitrate lyase and malate synthase are specific enzymes of the glyoxylate cycle, used here as glyoxysomal markers. Both enzymes were found in the mitochondrial fraction after organelle fractionation by isopycnic centrifugation. Electron microscopy of this fraction indicated that mitochondria were the only recognizable organelles. Using an immunogold labeling method with anti-(malate synthase) antiserum, the only organelles stained in cells were the mitochondria. These results show that the glyoxylate cycle is present in mitochondria in Euglena.  相似文献   
177.
178.
We demonstrated lanthionine introduction into hexa-histidine-tagged (His-tagged) nukacin ISK-1 prepeptide NukA by modification enzyme NukM in Escherichia coli. Co-expression of nukA and nukM, purification of the resulting His-tagged prepeptide by affinity chromatography, and subsequent mass spectrometry analysis showed that the prepeptide was converted into a postulated peptide with decrease in mass of 72Da which resulted from dehydration of four amino acids. Characterization of the resultant prepeptide indicated the presence of unusual amino acids, such as dehydrated amino acid, lanthionine or 3-methyllanthionine, in its C-terminal propeptide moiety. The modified prepeptide encompassing the leader peptide attached to the post-translationally modified propeptide moiety was readily obtained by one-step purification. Our findings will thus be a powerful tool for introducing unusual amino acids aimed at peptide engineering and also helpful to provide new insight for further understanding of lanthionine-forming enzymes for lantibiotics.  相似文献   
179.
The balance between the capacities of RuBP (ribulose-1,5-bisphosphate) carboxylation (V(cmax)) and RuBP regeneration (expressed as the maximum electron transport rate, J(max)) determines the CO(2) dependence of the photosynthetic rate. As it has been suggested that this balance changes depending on the growth temperature, the hypothesis that the seasonal change in air temperature affects the balance and modulates the CO(2) response of photosynthesis was tested. V(cmax) and J(max) were determined in summer and autumn for young and old leaves of Polygonum cuspidatum grown at two CO(2) concentrations (370 and 700 micromol mol(-1)). Elevated CO(2) concentration tended to reduce both V(cmax) and J(max) without changing the J(max):V(cmax) ratio. The seasonal environment, on the other hand, altered the ratio such that the J(max):V(cmax) ratio was higher in autumn leaves than summer leaves. This alternation made the photosynthetic rate more dependent on CO(2) concentration in autumn. Therefore, when photosynthetic rates were compared at growth CO(2) concentration, the stimulation in photosynthetic rate was higher in young-autumn than in young-summer leaves. In old-autumn leaves, the stimulation of photosynthesis brought by a change in the J(max):V(cmax) ratio was partly offset by accelerated leaf senescence under elevated CO(2). Across the two seasons and the two CO(2) concentrations, V(cmax) was strongly correlated with Rubisco and J(max) with cytochrome f content. These results suggest that seasonal change in climate affects the relative amounts of photosynthetic proteins, which in turn affect the CO(2) response of photosynthesis.  相似文献   
180.
Photoinhibition has been often evaluated with leaf discs floated on water or placed on wet papers to prevent desiccation. Under these conditions, there is a possibility that CO2 diffusion is blocked by water, which may lead to reduction in photosynthetic CO2 assimilation. Using Chenopodium album L. grown at two irradiances, photosynthesis, quantum yield of Photosystem II (ΔF/F m′), non-photochemical quenching (qN), and photoinhibition were compared between detached leaves and leaf discs. In low-light-grown plants, photoinhibition was greater in leaf discs than in detached leaves, while in high-light-grown plants, there was little difference. Leaf discs showed lower rates of photosynthesis and ΔF/F m′, and higher qN. The ΔF/F m′ in leaf discs increased when leaf discs were exposed to high concentration of CO2, suggesting that CO2 diffusion to chloroplasts was limited in leaf discs floated on water. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号