首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2165篇
  免费   122篇
  2022年   5篇
  2021年   22篇
  2020年   16篇
  2019年   17篇
  2018年   22篇
  2017年   25篇
  2016年   39篇
  2015年   59篇
  2014年   72篇
  2013年   115篇
  2012年   124篇
  2011年   119篇
  2010年   88篇
  2009年   93篇
  2008年   115篇
  2007年   114篇
  2006年   107篇
  2005年   122篇
  2004年   112篇
  2003年   96篇
  2002年   108篇
  2001年   69篇
  2000年   58篇
  1999年   63篇
  1998年   16篇
  1997年   16篇
  1996年   22篇
  1995年   22篇
  1994年   19篇
  1993年   24篇
  1992年   41篇
  1991年   27篇
  1990年   32篇
  1989年   33篇
  1988年   28篇
  1987年   21篇
  1986年   36篇
  1985年   27篇
  1984年   29篇
  1983年   20篇
  1982年   10篇
  1981年   6篇
  1979年   9篇
  1978年   7篇
  1976年   4篇
  1975年   12篇
  1974年   6篇
  1972年   8篇
  1971年   7篇
  1970年   5篇
排序方式: 共有2287条查询结果,搜索用时 31 毫秒
991.
Our purpose was to compare HDL subpopulations, as determined by nondenaturing two-dimensional gel electrophoresis followed by immunoblotting for apolipoprotein A-I (apoA-I), apoA-II, apoA-IV, apoCs, and apoE in heterozygous, compound heterozygous, and homozygous subjects for cholesteryl ester transfer protein (CETP) deficiency and controls. Heterozygotes, compound heterozygotes, and homozygotes had CETP masses that were 30, 63, and more than 90% lower and HDL-cholesterol values that were 64, 168, and 203% higher than those in controls, respectively. Heterozygotes had approximately 50% lower pre-beta-1 and more than 2-fold higher levels of alpha-1 and pre-alpha-1 particles than controls. Three of the five heterozygotes' alpha-1 particles also contained apoA-II, which was not seen in controls. Compound heterozygotes and homozygotes had very large particles not observed in controls and heterozygotes. These particles contained apoA-I, apoA-II, apoCs, and apoE. However, these subjects did not have decreased pre-beta-1 levels. Our data indicate that CETP deficiency results in the formation of very large HDL particles containing all of the major HDL apolipoproteins except for apoA-IV. We hypothesize that the HDL subpopulation profile of heterozygous CETP-deficient patients, especially those with high levels of alpha-1 containing apoA-I but no apoA-II, represent an improved anti-atherogenic state, although this might not be the case for compound heterozygotes and homozygotes with very large, undifferentiated HDL particles.  相似文献   
992.
N Sakihama  A Kaneko  T Hattori  K Tanabe 《Gene》2001,279(1):41-48
Intragenic recombination is a principal mechanism for the generation of allelic variation in the merozoite surface protein-1 gene (Msp-1) of the human malaria parasite Plasmodium falciparum. In the present study, linkage disequilibrium between the 5'- and 3'-polymorphic sites was analyzed to determine the frequency of recombination events in Msp-1 in parasite populations on four islands in Vanuatu, the southwestern Pacific, where malaria transmission is moderate and comparable to other mesoendemic areas. Of 141 isolates, whose 5'-haplotypes (Msp-1 blocks 2-6) were determined by PCR-based typing, 138 were successfully sequenced for the 3'-polymorphism (block 17). A total of four distinct 5'-haplotypes and three distinct 3'-sequence types were identified with apparently different frequency distribution among islands. The number of 5'-haplotypes in each island was one to four, far smaller than in other previously studied geographic areas (ten to 21). Associations between the 5'- and 3'-polymorphisms (here termed Msp-1 gene types) were subjected to the R(2) linkage disequilibrium test. The test revealed complete or very strong linkage disequilibrium in all four islands. Mixed infection was unusually rare (2.1%) and the mean number of Msp-1 alleles per person was nearly 1.0. The heterozygosity of the Msp-1 gene type calculated for each island (h=0.41-0.65) was significantly lower than that in other areas of comparable endemicity (h=0.81-0.89) (P<0.01). These results indicate that recombination events in Msp-1 would be extremely limited in Vanuatu, and stress that the frequency of recombination in Msp-1 is determined by not only the intensity of malaria transmission but the frequency of mixed clone infections, the mean number of clones per person and a repertoire of clones in a local area.  相似文献   
993.
[Purpose]Skeletal muscle glycogen is a determinant of endurance capacity for some athletes. Ginger is well known to possess nutritional effects, such as anti-diabetic effects. We hypothesized that ginger extract (GE) ingestion increases skeletal muscle glycogen by enhancing fat oxidation. Thus, we investigated the effect of GE ingestion on exercise capacity, skeletal muscle glycogen, and certain blood metabolites in exercised rats. [Methods]First, we evaluated the influence of GE ingestion on body weight and elevation of exercise performance in rats fed with different volumes of GE. Next, we measured the skeletal muscle glycogen content and free fatty acid (FFA) levels in GE-fed rats. Finally, we demonstrated that GE ingestion contributes to endurance capacity during intermittent exercise to exhaustion. [Results]We confirmed that GE ingestion increased exercise performance (p<0.05) and elevated the skeletal muscle glycogen content compared to the non-GE-fed (CE, control exercise) group before exercise (Soleus: p<0.01, Plantaris: p<0.01, Gastrocnemius: p<0.05). Blood FFA levels in the GE group were significantly higher than those in the CE group after exercise (p<0.05). Moreover, we demonstrated that exercise capacity was maintained in the CE group during intermittent exercise (p<0.05). [Conclusion]These findings indicate that GE ingestion increases skeletal muscle glycogen content and exercise performance through the upregulation of fat oxidation.  相似文献   
994.
A number of reports have provided genetic evidence for an association between the DTNBP1 gene (coding dysbindin) and schizophrenia. In addition, sandy mice, which harbor a deletion in the DTNBP1 gene and lack dysbindin, display behavioral abnormalities suggestive of an association with schizophrenia. However, the mechanism by which the loss of dysbindin induces schizophrenia-like behaviors remains unclear. Here, we report that small interfering RNA-mediated knockdown of dysbindin resulted in the aberrant organization of actin cytoskeleton in SH-SY5Y cells. Furthermore, we show that morphological abnormalities of the actin cytoskeleton were similarly observed in growth cones of cultured hippocampal neurons derived from sandy mice. Moreover, we report a significant correlation between dysbindin expression level and the phosphorylation level of c-Jun N-terminal kinase (JNK), which is implicated in the regulation of cytoskeletal organization. These findings suggest that dysbindin plays a key role in coordinating JNK signaling and actin cytoskeleton required for neural development.  相似文献   
995.
Rice paddy soil has been shown to have strong denitrifying activity. However, the microbial populations responsible for nitrate respiration and denitrification have not been well characterized. In this study, we performed a clone library analysis of >1,000 clones of the nearly full-length 16S rRNA gene to characterize bacterial community structure in rice paddy soil. We also identified potential key players in nitrate respiration and denitrification by comparing the community structures of soils with strong denitrifying activity to those of soils without denitrifying activity. Clone library analysis showed that bacteria belonging to the phylum Firmicutes, including a unique Symbiobacterium clade, dominated the clones obtained in this study. Using the template match method, several operational taxonomic units (OTUs), most belonging to the orders Burkholderiales and Rhodocyclales, were identified as OTUs that were specifically enriched in the sample with strong denitrifying activity. Almost one-half of these OTUs were classified in the genus Herbaspirillum and appeared >10-fold more frequently in the soils with strong denitrifying activity than in the soils without denitrifying activity. Therefore, OTUs related to Herbaspirillum are potential key players in nitrate respiration and denitrification under the conditions used.Rice is one of the most important agronomic plants in the world (20). More than 135 million ha are used for rice cultivation worldwide, 88% of which consists of paddy fields (i.e., flooded fields) (16). Since rice paddy soil has limited available oxygen, various anaerobic biochemical processes can occur, including methane production, Mn4+ and Fe3+ reduction, nitrate respiration, and denitrification.Denitrification is a microbial respiratory process during which soluble nitrogen oxides (NO3 and NO2) are reduced to gaseous products (NO, N2O, and N2) (14, 43). Reduction of nitrate (NO3) to nitrite (NO2) is part of the denitrification process; however, this reaction can also be performed by nondenitrifiers. Reduction of nitrate to nitrite as an end product is called nitrate respiration (43). The emission of N2O from rice paddy soils is less than that from upland crop fields (2), which is probably due to complete nitrate-nitrite reduction to N2, since rice paddy soil is known to have strong denitrifying activity (28). However, the microbes responsible for denitrification in rice paddy soil are not well known.Denitrifying ability is sporadically distributed among taxonomically diverse groups of bacteria, as well as some archaea and fungi (14, 33, 43). Therefore, it is difficult to identify denitrifying organisms based only on their 16S rRNA gene sequences (33). However, culture-independent 16S rRNA gene analysis can be used to identify microbial populations responsive to denitrification-inducing conditions if they are properly differentiated from background populations. The 16S rRNA gene can provide taxonomic information about organisms which cannot be obtained from analyses targeting nitrite reductase genes (nirS and nirK) alone (34).One approach to differentiate functionally active populations from background populations is to use stable-isotope probing (SIP) (35). SIP was previously used to identify succinate-assimilating bacterial populations under denitrifying conditions in rice paddy soil, using nitrate and succinate as the electron acceptor and donor, respectively (37). Although SIP analysis can provide solid evidence that links function with taxonomy, it requires assimilation of isotopically labeled substrates. This may limit the application of SIP in studies of dissimilatory processes, such as nitrate respiration and denitrification. For example, previous SIP studies targeted bacteria assimilating 13C-labeled acetate, methanol, or succinate under denitrifying conditions (13, 30, 37).Another approach is to detect specifically enriched microbial populations under certain conditions by comparative analysis of 16S rRNA gene sequences (9). This approach does not necessarily require addition of isotopically labeled substrates and therefore has the potential to identify microbes performing dissimilatory processes. Furthermore, the community structure of the total population can also be elucidated in this manner (10, 25, 36). However, the usefulness of comparative analysis of 16S rRNA gene sequences has not been thoroughly tested. In addition, this approach has not been used to study nitrate respirators and denitrifiers.Consequently, the objectives of this study were (i) to characterize the soil bacterial population in rice paddy soil by clone library analysis of >1,000 clones of the nearly full-length 16S rRNA gene and (ii) to identify active bacterial populations under denitrification-inducing conditions by comparing clone libraries.  相似文献   
996.
We developed four microsatellite DNA loci to test for multiple paternity of black rockfish, Sebastes inermis, from the Seto Inland Sea of Japan. All loci showed a high degree of polymorphism (number of alleles per locus = 10–14, expected heterozygosity = 0.80) and discriminating power (probability of identity index = 3.71 × 10−6, exclusion probability = 0.999) in unrelated wild specimens (n = 32). Genotypic assignment of five dams (109–220 mm in total length) and 50 embryos from each dam (n = 50) indicated that four dams were mated with a single sire. Only for one dam and three of her embryos we could not exclude multiple paternity.  相似文献   
997.
998.
999.
This work presents the genome sequencing of the lager brewing yeast (Saccharomyces pastorianus) Weihenstephan 34/70, a strain widely used in lager beer brewing. The 25 Mb genome comprises two nuclear sub-genomes originating from Saccharomyces cerevisiae and Saccharomyces bayanus and one circular mitochondrial genome originating from S. bayanus. Thirty-six different types of chromosomes were found including eight chromosomes with translocations between the two sub-genomes, whose breakpoints are within the orthologous open reading frames. Several gene loci responsible for typical lager brewing yeast characteristics such as maltotriose uptake and sulfite production have been increased in number by chromosomal rearrangements. Despite an overall high degree of conservation of the synteny with S. cerevisiae and S. bayanus, the syntenies were not well conserved in the sub-telomeric regions that contain lager brewing yeast characteristic and specific genes. Deletion of larger chromosomal regions, a massive unilateral decrease of the ribosomal DNA cluster and bilateral truncations of over 60 genes reflect a post-hybridization evolution process. Truncations and deletions of less efficient maltose and maltotriose uptake genes may indicate the result of adaptation to brewing. The genome sequence of this interspecies hybrid yeast provides a new tool for better understanding of lager brewing yeast behavior in industrial beer production.Key words: Saccharomyces pastorianus, beer, genome, interspecies hybrid, larger yeast  相似文献   
1000.
The aim of palliative chemotherapy is to increase survival whilst maintaining maximum quality of life for the individual concerned. Although we are still continuing to explore the optimum use of traditional chemotherapy agents, the introduction of targeted therapies has significantly broadened the therapeutic options. Interestingly, the results from current trials put the underlying biological concept often into a new, less favorable perspective. Recent data suggested that altered pathways underlie cancer, and not just altered genes. Thus, an effective therapeutic agent will sometimes have to target downstream parts of a signaling pathway or physiological effects rather than individual genes. In addition, over the past few years increasing evidence has suggested that solid tumors represent a very heterogeneous group of cells with different susceptibility to cancer therapy. Thus, since therapeutic concepts and pathophysiological understanding are continuously evolving a combination of current concepts in tumor therapy and tumor biology is needed. This review aims to present current problems of cancer therapy by highlighting exemplary results from recent clinical trials with colorectal and pancreatic cancer patients and to discuss the current understanding of the underlying reasons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号