首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2057篇
  免费   122篇
  国内免费   3篇
  2022年   9篇
  2021年   12篇
  2020年   13篇
  2019年   20篇
  2018年   26篇
  2017年   19篇
  2016年   32篇
  2015年   58篇
  2014年   56篇
  2013年   110篇
  2012年   113篇
  2011年   128篇
  2010年   70篇
  2009年   69篇
  2008年   103篇
  2007年   116篇
  2006年   103篇
  2005年   106篇
  2004年   114篇
  2003年   88篇
  2002年   73篇
  2001年   66篇
  2000年   68篇
  1999年   56篇
  1998年   25篇
  1997年   29篇
  1996年   22篇
  1995年   29篇
  1994年   23篇
  1993年   19篇
  1992年   37篇
  1991年   45篇
  1990年   37篇
  1989年   33篇
  1988年   26篇
  1987年   27篇
  1986年   23篇
  1985年   22篇
  1984年   25篇
  1983年   16篇
  1982年   11篇
  1981年   12篇
  1980年   8篇
  1979年   11篇
  1978年   9篇
  1977年   7篇
  1975年   11篇
  1972年   5篇
  1970年   5篇
  1969年   8篇
排序方式: 共有2182条查询结果,搜索用时 515 毫秒
71.
ß-Naphthyl di-, tri- or tetraphosphate inhibits photophosphorylationof spinach chloroplasts competitively with ADP, whereas ß-naphthylmonophosphate inhibits it competitively with Pi. The apparentKi of ß-naphthyl diphosphate for the ADP site was300 µM and that of ß-naphthyl monophosphatefor the Pi site was 1.45 mM. At 10 mM, both of these two organicphosphates inhibited photophosphorylation more than 90%. Noneof the above four ß-naphthyl phosphates were phosphorylatedby chloroplasts. ß-Naphthyl di-, tri- or tetraphosphateinhibits ATPase activity of isolated chloroplast coupling factor1 (CF1) (EC 3.6.1.3 [EC] ) and light-triggered ATPase activity ofchloroplasts competitively with ATP, whereas ß-naphthylmonophosphate acts non-competitively. None of the four ß-naphthylphosphates were hydrolyzed by these two ATPase activities. Atconcentrations equal to ADP or ATP, ß-naphthyl di-,tri- or tetraphosphate inhibited these three reactions in theorder; ATPase of isolated CF1> photophosphorylation>light-triggeredATPase of chloroplasts. The results suggest that the effect of the monophosphate isprincipally on the Pi site(s) and that of the di-, tri- or tetraphosphateis on the adenine nucleotide site(s) on the active center ofCF1. 1Part of this work was reported at the 1979 Annual Meeting ofthe Japanese Society of Plant Physiologists (Nagoya, April 7,1979) and the 52nd Annual Meeting of the Japanese BiochemicalSociety (Tokyo, October 7, 1979). This work was supported inpart by Grants-in-Aid for Scientific Research from the Ministryof Education, Science and Culture, Japan (311808 and 311909). (Received November 14, 1979; )  相似文献   
72.
Rhodotorucine A which induces mating tube formation of a cells in Rhodosporidiumtoruloides is metabolized rapidly by a cells. By use of labeled rhodotorucine A, the degradation was found to be proteolytic. Two peptide fragments Tyr-Pro-Glu-Ile-Ser-Trp-Thr-Arg and Asn-Gly-Cys(S-farnesyl) were identified as the metabolites. Proteolysis of the pheromone mainly occurred on the cell surface. Culture filtrate of a cells at log phase did not metabolize rhodotorucine A.  相似文献   
73.
[14-14C]16 alpha-Hydroxy-C-18- and C-19-steroid hormones were obtained in good yields by microbiological hydroxylation of correspondingly labelled steroids by Streptomyces roseochromogenes NRRL B-1233. Trace quantities of the labelled substrates were incubated on a rotary shaker (220 rpm) at 27 degrees C. The radioactive products were chromatographically separated, identified and the radiochemical purity was established by isotopic dilution analysis. The specific activities of 16 alpha-hydroxy-steroids obtained were assumed to be the same as those of the substrates, namely, 57.5 mCi/mmole for 16 alpha-hydroxy-4-androstene-3,17-dione, 57.5 mCi/mmole for 5-androstene-3 beta,16 alpha,17 beta-triol, 57.5 mCi/mmole for 16 alpha-hydroxy-dehydroepiandrosterone, 55.7 mCi/mmole for 16 alpha-hydroxy-estrone, and 57.5 mCi/mmole for 16 alpha-hydroxy-testosterone.  相似文献   
74.
Distribution of ribonucleic acid coliphages in south and east Asia.   总被引:8,自引:4,他引:4       下载免费PDF全文
We investigated the distribution of ribonucleic acid (RNA) coliphages in the Philippines, Singapore, Indonesia, India, and Thailand by collecting sewage samples from domestic drainage in November 1976. Of the 221 samples collected from domestic drainage, 50 contained RNA phages (52 strains). By serological analysis, 46 of the 52 strains were found to belong to group III. It can thus be said that the most prevalent RNA phages in Southeast Asia (at least, in the Philippines, Singapore, and Indonesia) were group III phages. Investigations of sewage samples collected from domestic drainage in Japan indicate that the most prevalent RNA phages in mainland Japan (north of Kyushu) are group II phages, whereas group III phages are predominant in the southern part of Japan (south of Amamiohshima Island). We therefore propose a borderline between Kyushu and Amamiohshima Island for the geographical distribution of RNA coliphages in the domestic drainage of South and East Asia. Moreover, one strain (ID2) was inactivated to some extent with the antisera of four groups of RNA phages. This is thought to be significant from the evolutionary viewpoint.  相似文献   
75.
The mechanism by which dihydroconiferyl alcohol (DCA) stimulatesindole-3-acetic acid (IAA)-induced elongation of cucumber hypocotylsections was studied. Although DCA did not affect the uptakeof IAA-5-3H by hypocotyl sections, the endogenous level of IAA-5-3Hin DCA-treated sections was much higher than in DCA untreatedones. IAA-5-3H in the incubation medium was degraded in thepresence of hypocotyl sections, and this degradation of IAAwas inhibited by DCA. An in vitro experiment with horseradishperoxidase revealed that DCA inhibited the IAA degrading activityof the oxidase, as did caffeic acid and ferulic acid. Theseresults suggested that DCA enhances IAA-induced cucumber hypocotylelongation by acting as an antioxidant of IAA. (Received June 4, 1975; )  相似文献   
76.
Decreased affinity of an antibody for a mutated epitope in an antigen can be enhanced and reversed by mutations in certain antibody residues. Here we describe the crystal structures of (a) the complex between a naturally mutated proteinaceous antigen and an antibody that was mutated and selected in vitro, and (b) the complex between the normal antigen and the mutated antibody. The mutated and selected antibody recognizes essentially the same epitope as in the wild-type antibody, indicating successful target site-directed functional alteration of the antibody. In comparing the structure of the mutated antigen-mutant antibody complex with the previously established structure of the wild-type antigen-wild-type antibody complex, we found that the enhanced affinity of the mutated antibody for the mutant antigen originated not from improvements in local complementarity around the mutated sites but from subtle and critical structural changes in nonmutated sites, including an increase in variable domain interactions. Our findings indicate that only a few mutations in the antigen-binding region of an antibody can lead to some structural changes in its paratopes, emphasizing the critical roles of the plasticity of loops in the complementarity-determining region and also the importance of the plasticity of the interaction between the variable regions of immunoglobulin heavy and light chains in determining the specificity of an antibody.  相似文献   
77.
Acidiphilium multivorum AIU 301 isolated from acid mineral water had strong arsenic resistance. This bacterium harbored a number of plasmids with different molecular sizes. A plasmid of 56 kbp, named pKW301, was isolated from A. multivorum AIU 301. When pKW301 was transferred into Escherichia coli JM109 by electroporation, an E. coli transformant carrying pKW301 exhibited resistance to sodium arsenite, sodium arsenate, and mercuric (II) chloride.  相似文献   
78.
79.
Ishii T  Sakurai T  Usami H  Uchida K 《Biochemistry》2005,44(42):13893-13901
Reactive oxygen species (ROS) have the potential to damage cellular components, such as protein, resulting in loss of function and structural alteration of proteins. The oxidative process affects a variety of side amino acid groups, some of which are converted to carbonyl compounds. We have previously shown that a prostaglandin D2 metabolite, 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2), is the potent inducer of intracellular oxidative stress on human neuroblastoma SH-SY5Y cells [Kondo, M., Oya-Ito, T., Kumagai, T., Osawa, T., and Uchida, K. (2001) Cyclopentenone prostaglandins as potential inducers of intracellular oxidative stress, J. Biol. Chem. 276, 12076-12083]. In the present study, to elucidate the molecular mechanism underlying the oxidative stress-mediated cell degeneration, we analyzed the protein carbonylation on SH-SY5Y cells when these cells were submitted to an endogenous inducer of ROS production. Upon exposure of SH-SY5Y cells to this endogenous electrophile, we observed significant accumulation of protein carbonyls within the cells. Proteomic analysis of oxidation-sensitive proteins showed that the major intracellular target of protein carbonylation was one of the regulatory subunits in 26 S proteasome, S6 ATPase. Accompanied by a dramatic increase in protein carbonyls within S6 ATPase, the electrophile-induced oxidative stress exerted a significant decrease in the S6 ATPase activities and a decreased ability of the 26 S proteasome to degrade substrates. Moreover, in vitro oxidation of 26 S proteasome with a metal-catalyzed oxidation system also confirmed that S6 ATPase represents the most oxidation-sensitive subunit in the proteasome. These and the observation that down-regulation of S6 ATPase by RNA interference resulted in the enhanced accumulation of ubiquitinated proteins suggest that S6 ATPase is a molecular target of ROS under conditions of electrophile-induced oxidative stress and that oxidative modification of this regulatory subunit of proteasome may be functionally associated with the altered recognition and degradation of proteasomal substrates in the cells.  相似文献   
80.
Ligation, the joining of DNA fragments, is a fundamental procedure in molecular cloning and is indispensable to the production of genetically modified organisms that can be used for basic research, the applied biosciences, or both. Given that many genes cooperate in various pathways, incorporating multiple gene cassettes in tandem in a transgenic DNA construct for the purpose of genetic modification is often necessary when generating organisms that produce multiple foreign gene products. Here, we describe a novel method, designated PRESSO (precise sequential DNA ligation on a solid substrate), for the tandem ligation of multiple DNA fragments. We amplified donor DNA fragments with non-palindromic ends, and ligated the fragment to acceptor DNA fragments on solid beads. After the final donor DNA fragments, which included vector sequences, were joined to the construct that contained the array of fragments, the ligation product (the construct) was thereby released from the beads via digestion with a rare-cut meganuclease; the freed linear construct was circularized via an intra-molecular ligation. PRESSO allowed us to rapidly and efficiently join multiple genes in an optimized order and orientation. This method can overcome many technical challenges in functional genomics during the post-sequencing generation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号