首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1402篇
  免费   56篇
  2024年   2篇
  2023年   1篇
  2022年   3篇
  2021年   20篇
  2020年   6篇
  2019年   14篇
  2018年   27篇
  2017年   25篇
  2016年   33篇
  2015年   53篇
  2014年   57篇
  2013年   110篇
  2012年   118篇
  2011年   119篇
  2010年   73篇
  2009年   57篇
  2008年   90篇
  2007年   84篇
  2006年   80篇
  2005年   78篇
  2004年   84篇
  2003年   73篇
  2002年   83篇
  2001年   7篇
  2000年   10篇
  1999年   11篇
  1998年   20篇
  1997年   14篇
  1996年   9篇
  1995年   14篇
  1994年   16篇
  1993年   15篇
  1992年   1篇
  1991年   6篇
  1990年   6篇
  1989年   7篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1982年   7篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1976年   3篇
  1975年   1篇
  1969年   2篇
  1966年   1篇
排序方式: 共有1458条查询结果,搜索用时 15 毫秒
991.
Conservation and diversification of Msx protein in metazoan evolution   总被引:2,自引:0,他引:2  
Msx (/msh) family genes encode homeodomain (HD) proteins that control ontogeny in many animal species. We compared the structures of Msx genes from a wide range of Metazoa (Porifera, Cnidaria, Nematoda, Arthropoda, Tardigrada, Platyhelminthes, Mollusca, Brachiopoda, Annelida, Echiura, Echinodermata, Hemichordata, and Chordata) to gain an understanding of the role of these genes in phylogeny. Exon-intron boundary analysis suggested that the position of the intron located N-terminally to the HDs was widely conserved in all the genes examined, including those of cnidarians. Amino acid (aa) sequence comparison revealed 3 new evolutionarily conserved domains, as well as very strong conservation of the HDs. Two of the three domains were associated with Groucho-like protein binding in both a vertebrate and a cnidarian Msx homolog, suggesting that the interaction between Groucho-like proteins and Msx proteins was established in eumetazoan ancestors. Pairwise comparison among the collected HDs and their C-flanking aa sequences revealed that the degree of sequence conservation varied depending on the animal taxa from which the sequences were derived. Highly conserved Msx genes were identified in the Vertebrata, Cephalochordata, Hemichordata, Echinodermata, Mollusca, Brachiopoda, and Anthozoa. The wide distribution of the conserved sequences in the animal phylogenetic tree suggested that metazoan ancestors had already acquired a set of conserved domains of the current Msx family genes. Interestingly, although strongly conserved sequences were recovered from the Vertebrata, Cephalochordata, and Anthozoa, the sequences from the Urochordata and Hydrozoa showed weak conservation. Because the Vertebrata-Cephalochordata-Urochordata and Anthozoa-Hydrozoa represent sister groups in the Chordata and Cnidaria, respectively, Msx sequence diversification may have occurred differentially in the course of evolution. We speculate that selective loss of the conserved domains in Msx family proteins contributed to the diversification of animal body organization.  相似文献   
992.
993.
To inhibit arthritis upstream of inflammatory cytokine release and matrix metalloproteinase (MMP) action, we designed de novo a small-molecule inhibitor of c-Fos/activator protein-1 (AP-1) using three-dimensional (3D) pharmacophore modeling. This model was based on the 3D structure of the basic region-leucine zipper domain of AP-1-DNA complex. Administration of this inhibitor prevented type II collagen-induced arthritis from day 21, before the onset of arthritis, or from day 27, resolved arthritis after its onset. Suppression of disease was accomplished by reducing the amounts of inflammatory cytokines and MMPs in vivo in sera and joints and in vitro in synovial cell and chondrocyte cultures. The primary action of this molecule was the inhibition of matrix-degrading MMPs and inflammatory cytokines including interleukin 1beta; this molecule also synergized with anti-tumor necrosis factor alpha to inhibit arthritis. Thus, selective inhibition of c-Fos/AP-1 resolves arthritis in a preclinical model of the disease.  相似文献   
994.
We have designed a novel tiling array, AtMap1, for genomic deletion mapping. AtMap1 is a 60-mer oligonucleotide microarray consisting of 42 497 data probes designed from the genomic sequence of Arabidopsis thaliana Col-0. The average probe interval is 2.8 kb. The performance of the AtMap1 array was assessed using the deletion mutants mag2-2, rot3-1 and zig-2. Eight of the probes showed threefold lower signals in mag2-2 than Col-0. Seven of these probes were located in one region on chromosome 3. We considered these adjacent probes to represent one deletion. This deletion was consistent with a reported deleted region. The other probe was located near the end of chromosome 4. A newly identified deletion around the probe was confirmed by PCR. We also detected the responsible deletions for rot3-1 and zig-2. Thus we concluded that the AtMap1 array was sufficiently sensitive to identify a deletion without any a priori knowledge of the deletion. An analysis of the result of hybridization of Ler and previously reported polymorphism data revealed that the signal decrease tended to depend on the overlap size of sequence polymorphisms. Mutation mapping is time-consuming, laborious and costly. The AtMap1 array removes these limitations.  相似文献   
995.
A novel class of potent CCR3 receptor antagonists were designed and synthesized starting from N-{1-[(6-fluoro-2-naphthyl)methyl]piperidin-4-yl}benzamide (1),which was found by subjecting our chemical library to high throughput screening (HTS). The CCR3 inhibitory activity of the synthesized compounds against eotaxin-induced Ca(2+) influx was evaluated using CCR3-expressing preB cells. Systematic chemical modifications of 1 revealed that the 6-fluoro-2-naphthylmethyl moiety was essential for CCR3 inhibitory activity in this new series of CCR3 antagonists. Further structural modifications of the benzamide and piperidine moieties of 1 led to the identification of exo-N-{8-[(6-fluoro-2-naphthyl)methyl]-8-azabicyclo[3.2.1]oct-3- yl}biphenyl-2-carboxamide [corrected] (31) as a potent CCR3 antagonist with an IC(50) value of 0.020 microM.  相似文献   
996.
997.
Although neutrophils are known to migrate in response to various chemokines and complement factors, the substances involved in the early stages of their transmigration and activation have been poorly characterized to date. Here we report the discovery of a peptide isolated from healthy porcine hearts that activated neutrophils. Its primary structure is H-Leu-Ser-Phe-Leu-Ile-Pro-Ala-Gly-Trp-Val-Leu-Ser-His-Leu-Asp-His-Tyr-Lys-Arg-Ser-Ser-Ala-Ala-OH, and it was indicated to originate from mitochondrial cytochrome c oxidase subunit VIII. This peptide caused chemotaxis at concentrations lower than that inducing beta-hexosaminidase release. Such responses were observed in neutrophilic/granulocytic differentiated HL-60 cells but not in undifferentiated cells, and G(i2)-type G proteins were suggested to be involved in the peptide signaling. Moreover the peptide activated human neutrophils to induce beta-hexosaminidase secretion. A number of other amphipathic neutrophil-activating peptides presumably originating from mitochondrial proteins were also found. The present results suggest that neutrophils monitor such amphipathic peptides including the identified peptide as an initiation signal for inflammation at injury sites.  相似文献   
998.
The regulation of abscisic acid (ABA) biosynthesis is essential for plant responses to drought stress. In this study, we examined the tissue-specific localization of ABA biosynthetic enzymes in turgid and dehydrated Arabidopsis (Arabidopsis thaliana) plants using specific antibodies against 9-cis-epoxycarotenoid dioxygenase 3 (AtNCED3), AtABA2, and Arabidopsis aldehyde oxidase 3 (AAO3). Immunohistochemical analysis revealed that in turgid plants, AtABA2 and AAO3 proteins were localized in vascular parenchyma cells most abundantly at the boundary between xylem and phloem bundles, but the AtNCED3 protein was undetectable in these tissues. In water-stressed plants, AtNCED3 was detected exclusively in the vascular parenchyma cells together with AtABA2 and AAO3. In situ hybridization using the antisense probe for AtNCED3 showed that the drought-induced expression of AtNCED3 was also restricted to the vascular tissues. Expression analysis of laser-microdissected cells revealed that, among nine drought-inducible genes examined, the early induction of most genes was spatially restricted to vascular cells at 1 h and then some spread to mesophyll cells at 3 h. The spatial constraint of AtNCED3 expression in vascular tissues provides a novel insight into plant systemic response to drought stresses.  相似文献   
999.
Strategies employed for the production of genetically modified (GM) crops are premised on (1) the avoidance of gene transfer in the field; (2) the use of genes derived from edible organisms such as plants; (3) preventing the appearance of herbicide-resistant weeds; and (4) maintaining transgenes without obstructing plant cell propagation. To this end, we developed a novel vector system for chloroplast transformation with acetolactate synthase (ALS). ALS catalyzes the first step in the biosynthesis of the branched amino acids, and its enzymatic activity is inhibited by certain classes of herbicides. We generated a series of Arabidopsis (Arabidopsis thaliana) mutated ALS (mALS) genes and introduced constructs with mALS and the aminoglycoside 3'-adenyltransferase gene (aadA) into the tobacco (Nicotiana tabacum) chloroplast genome by particle bombardment. Transplastomic plants were selected using their resistance to spectinomycin. The effects of herbicides on transplastomic mALS activity were examined by a colorimetric assay using the leaves of transplastomic plants. We found that transplastomic G121A, A122V, and P197S plants were specifically tolerant to pyrimidinylcarboxylate, imidazolinon, and sulfonylurea/pyrimidinylcarboxylate herbicides, respectively. Transplastomic plants possessing mALSs were able to grow in the presence of various herbicides, thus affirming the relationship between mALSs and the associated resistance to herbicides. Our results show that mALS genes integrated into the chloroplast genome are useful sustainable markers that function to exclude plants other than those that are GM while maintaining transplastomic crops. This investigation suggests that the resistance management of weeds in the field amid growing GM crops is possible using (1) a series of mALSs that confer specific resistance to herbicides and (2) a strategy that employs herbicide rotation.  相似文献   
1000.
Lin X  Minamisawa N  Takechi K  Zhang W  Sato H  Takio S  Tsukaya H  Takano H 《Planta》2008,228(4):601-608
ANGUSTIFOLIA (AN), a plant homolog of C-terminal binding protein, controls the polar elongation of leaf cells and the trichome-branching pattern in Arabidopsis thaliana. In the present study, degenerate PCR was used to isolate an ortholog of AN, referred to as LgAN, from larch (Larix gmelinii). The LgAN cDNA is predicted to encode a protein of 646 amino acids that shows striking sequence similarity to AN proteins from other plants. The predicted amino acid sequence has a conserved NAD-dependent 2-hydroxy acid dehydrogenase (D2-HDH) motif and a plant AN-specific LxCxE/D motif at its N-terminus, as well as a plant-specific long C-terminal region. The LgAN gene is a single-copy gene that is expressed in all larch tissues. Expression of the LgAN cDNA rescued the leaf width and trichome-branching pattern defects in the angustifolia-1 (an-1) mutant of Arabidopsis, showing that the LgAN gene has effects complementary to those of AN. These results suggest that the LgAN gene has the same function as the AN gene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号