首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   6篇
  2018年   1篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   4篇
  2006年   7篇
  2005年   4篇
  2004年   7篇
  2003年   7篇
  2002年   5篇
  2001年   5篇
  2000年   13篇
  1999年   7篇
  1998年   4篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
排序方式: 共有118条查询结果,搜索用时 46 毫秒
41.
Phospholipase Cδ3 (PLCδ3) is a key enzyme regulating phosphoinositide metabolism; however, its physiological function remains unknown. Because PLCδ3 is highly enriched in the cerebellum and cerebral cortex, we examined the role of PLCδ3 in neuronal migration and outgrowth. PLCδ3 knockdown (KD) inhibits neurite formation of cerebellar granule cells, and application of PLCδ3KD using in utero electroporation in the developing brain results in the retardation of the radial migration of neurons in the cerebral cortex. In addition, PLCδ3KD inhibits axon and dendrite outgrowth in primary cortical neurons. PLCδ3KD also suppresses neurite formation of Neuro2a neuroblastoma cells induced by serum withdrawal or treatment with retinoic acid. This inhibition is released by the reintroduction of wild-type PLCδ3. Interestingly, the H393A mutant lacking phosphatidylinositol 4,5-bisphosphate hydrolyzing activity generates supernumerary protrusions, and a constitutively active mutant promotes extensive neurite outgrowth, indicating that PLC activity is important for normal neurite outgrowth. The introduction of dominant negative RhoA (RhoA-DN) or treatment with Y-27632, a Rho kinase-specific inhibitor, rescues the neurite extension in PLCδ3KD Neuro2a cells. Similar effects were also detected in primary cortical neurons. Furthermore, the RhoA expression level was significantly decreased by serum withdrawal or retinoic acid in control cells, although this decrease was not observed in PLCδ3KD cells. We also found that exogenous expression of PLCδ3 down-regulated RhoA protein, and constitutively active PLCδ3 promotes the RhoA down-regulation more significantly than PLCδ3 upon differentiation. These results indicate that PLCδ3 negatively regulates RhoA expression, inhibits RhoA/Rho kinase signaling, and thereby promotes neurite extension.  相似文献   
42.
Nuclear migration during infection thread (IT) development in root hairs is essential for legume-Rhizobium symbiosis. However, little is known about the relationships between IT formation, nuclear migration, and microtubule dynamics. To this aim, we used transgenic Lotus japonicus expressing a fusion of the green fluorescent protein and tubulin-α6 from Arabidopsis thaliana to visualize in vivo dynamics of cortical microtubules (CMT) and endoplasmic microtubules (EMTs) in root hairs in the presence or absence of Mesorhizobium loti inoculation. We also examined the effect of microtubule-depolymerizing herbicide, cremart, on IT initiation and growth, since cremart is known to inhibit nuclear migration. In live imaging studies of M. loti-treated L. japonicus root hairs, EMTs were found in deformed, curled, and infected root hairs. The continuous reorganization of the EMT array linked to the nucleus appeared to be essential for the reorientation, curling, and IT initiation and the growth of zone II root hairs which are susceptible to rhizobial infection. During IT initiation, the EMTs appeared to be linked to the root hair surface surrounding the M. loti microcolonies. During IT growth, EMTs dissociated from the curled root hair tip, remained linked to the nucleus, and appeared to surround the IT tip. Lack or disorganized EMT arrays that were no longer linked to the nucleus were observed only in infection-aborted root hairs. Cremart affected IT formation and nodulation in a concentration-dependent manner, suggesting that the microtubule (MT) organization and successive nuclear migration are essential for successful nodulation in L. japonicus by M. loti.  相似文献   
43.
44.
45.
Numerous epidemiological data indicate that vitamin D receptor (VDR) signaling induced by its ligand or active metabolite 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) has anti-cancer activity in several colon cancers. 1α,25(OH)2D3 induces the epithelial differentiation of SW480 colon cancer cells expressing VDR (SW480-ADH) by upregulating E-cadherin expression; however, its precise mechanism remains unknown. We found that phosphatidylinositol-5-phosphate 4-kinase type II beta (PIPKIIβ) but not PIPKIIα is required for VDR-mediated E-cadherin induction in SW480-ADH cells. The syntenin-2 postsynaptic density protein/disc large/zona occludens (PDZ) domain and pleckstrin homology domain of phospholipase C-delta1 (PLCδ1 PHD) possess high affinity for phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) mainly localized to the nucleus and plasma membrane, respectively. The expression of syntenin-2 PDZ but not PLCδ1 PHD inhibited 1α,25(OH)2D3-induced E-cadherin upregulation, suggesting that nuclear PI(4,5)P2 production mediates E-cadherin expression through PIPKIIβ in a VDR-dependent manner. PIPKIIβ is also involved in the suppression of the cell motility induced by 1α,25(OH)2D3. These results indicate that PIPKIIβ-mediated PI(4,5)P2 signaling is important for E-cadherin upregulation and inhibition of cellular motility induced by VDR activation.  相似文献   
46.
47.
We have isolated a cDNA clone, designated GTI, by screeninga tobacco genetic tumor cDNA library with a tumor-specific "subtracted"cDNA probe. The cDNA contained the entire coding sequence fora 94-amino-acid polypeptide that exhibited significant homologyto members of the proteinase inhibitor I family from tomatoand potato. The predicted protein has a pre-sequence of 22 aminoacids but lacks a pro-sequence, unlike genes for proteinaseinhibitor I isolated to date. Furthermore, the protein encodedby GTI cDNA has a novel reactive site, having glutamine as theP1 reactive residue. These results suggest that the GTI proteinis a novel member of the proteinase inhibitor I family. ThemRNA for GTI accumulated at a high level but only transientlyafter the wounding of tobacco plants. Thus, it appears thatthe GTI protein has a function that is related to the protectionof tissues against damage due to wounding. (Received July 22, 1992; Accepted November 3, 1992)  相似文献   
48.
NodMl-V(C(18:1), Me, Cb, AcFuc) is a major component of lipo-chitin oligosaccharides (LCOs), or Nod factors, produced by Mesorhizobium loti. The presence of a 4-O-acetylated fucosyl residue (AcFuc) at the reducing end has been thought to be essential for symbiotic interactions with the compatible host plant, Lotus japonicus. We generated an M. loti mutant in which the nolL gene is disrupted; nolL has been shown to encode acetyltransferase that is responsible for acetylation of the fucosyl residue. The nolL disruptant Ml107 produced LCOs that lacked acetylation of fucosyl residues as expected, but exhibited nodulation performance on L. japonicus as efficiently as the wild-type M. loti strain MAFF303099. We show that LCOs without acetylation of a fucosyl residue purified from Ml107 are also able to induce abundant root hair deformation and nodule primordium formation. These results indicate that NolL-dependent acetylation of a fucosyl residue at the reducing end of M. loti LCOs is not essential for nodulation of L. japonicus.  相似文献   
49.
The nitrogen‐fixing symbiosis of legumes and Rhizobium bacteria is established by complex interactions between the two symbiotic partners. Legume Fix mutants form apparently normal nodules with endosymbiotic rhizobia but fail to induce rhizobial nitrogen fixation. These mutants are useful for identifying the legume genes involved in the interactions essential for symbiotic nitrogen fixation. We describe here a Fix mutant of Lotus japonicus, apn1, which showed a very specific symbiotic phenotype. It formed ineffective nodules when inoculated with the Mesorhizobium loti strain TONO. In these nodules, infected cells disintegrated and successively became necrotic, indicating premature senescence typical of Fix mutants. However, it formed effective nodules when inoculated with the M. loti strain MAFF303099. Among nine different M. loti strains tested, four formed ineffective nodules and five formed effective nodules on apn1 roots. The identified causal gene, ASPARTIC PEPTIDASE NODULE‐INDUCED 1 (LjAPN1), encodes a nepenthesin‐type aspartic peptidase. The well characterized Arabidopsis aspartic peptidase CDR1 could complement the strain‐specific Fix phenotype of apn1. LjAPN1 is a typical late nodulin; its gene expression was exclusively induced during nodule development. LjAPN1 was most abundantly expressed in the infected cells in the nodules. Our findings indicate that LjAPN1 is required for the development and persistence of functional (nitrogen‐fixing) symbiosis in a rhizobial strain‐dependent manner, and thus determines compatibility between M. loti and L. japonicus at the level of nitrogen fixation.  相似文献   
50.
The -subunit (240 kDa) of fodrin was found to be digested selectively to a 120 kDa fragment during apoptosis of rat thymocytes in vivo and in vitro. This fragment was detected by an antibody (Ab) against full length -fodrin, but not by the anti-N-terminal sequence (GMMPR) of the -calpain-generated 150 kDa fragment Ab or the anti-PEST sequence of -fodrin Ab. On the other hand, basal levels of the 150 kDa fragment were constantly recognized by these three antibodies during apoptosis. The production of the 120 kDa fragment during apoptosis was not affected by the addition of calpain inhibitors such as Ac-LLLnal and E-64d, despite inhibition of the generation of the 150 kDa fragment. When x-irradiated thymocytes were incubated in the presence of N-tosyl-L-phenylalanyl chloromethyl ketone (TPCK), both production of the 120 kDa fragment and apoptosis were suppressed. Purified - and m-calpain did not catalyze the formation of the 120 kDa fragment from purified -fodrin in vitro. These results suggest that a protease different from calpains is involved in the major process of -fodrin proteolysis to a 120 kDa fragment during thymic apoptosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号