首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   605篇
  免费   49篇
  国内免费   30篇
  684篇
  2023年   12篇
  2022年   20篇
  2021年   39篇
  2020年   19篇
  2019年   14篇
  2018年   23篇
  2017年   27篇
  2016年   27篇
  2015年   27篇
  2014年   42篇
  2013年   40篇
  2012年   45篇
  2011年   53篇
  2010年   37篇
  2009年   22篇
  2008年   25篇
  2007年   26篇
  2006年   19篇
  2005年   23篇
  2004年   12篇
  2003年   14篇
  2002年   25篇
  2001年   8篇
  2000年   16篇
  1999年   11篇
  1998年   7篇
  1997年   6篇
  1996年   6篇
  1995年   7篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   5篇
  1989年   2篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1982年   4篇
  1980年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有684条查询结果,搜索用时 15 毫秒
81.
82.
Mechanisms for asporin function and regulation in articular cartilage   总被引:1,自引:0,他引:1  
Osteoarthritis (OA), the most prevalent form of skeletal disease, represents a leading cause of disability following middle age. OA is characterized by the loss of articular cartilage; however, the details of its etiology and pathogenesis remain unclear. Recently, we demonstrated a genetic association between the cartilage extracellular matrix protein asporin and OA (Kizawa, H., Kou, I., Iida, A., Sudo, A., Miyamoto, Y., Fukuda, A., Mabuchi, A., Kotani, A., Kawakami, A., Yamamoto, S., Uchida, A., Nakamura, K., Notoya, K., Nakamura, Y., and Ikegawa, S. (2005) Nat. Genet. 37, 138-144). Furthermore, we showed that asporin binds to transforming growth factor-beta (TGF-beta), a key cytokine in OA pathogenesis, and inhibits TGF-beta-induced chondrogenesis. To date, functional data for asporin have come primarily from mouse cell culture models of developing cartilage rather than from human articular cartilage cells, in which OA occurs. Here, we describe mechanisms for asporin function and regulation in human articular cartilage. Asporin blocks chondrogenesis and inhibits TGF-beta1-induced expression of matrix genes and the resulting chondrocyte phenotypes. Small interfering RNA-mediated knockdown of asporin increases the expression of cartilage marker genes and TGF-beta1; in turn, TGF-beta1 stimulates asporin expression in articular cartilage cells, suggesting that asporin and TGF-beta1 form a regulatory feedback loop. Asporin inhibits TGF-beta/Smad signaling upstream of TGF-beta type I receptor activation in vivo by co-localizing with TGF-beta1 on the cell surface and blocking its interaction with the TGF-beta type II receptor. Our results provide a basis for elucidating the role of asporin in the molecular pathogenesis of OA.  相似文献   
83.
李钦  李丽 《微生物学报》1989,29(1):39-44
Two strains of Pseudomonus sp. having the extracellular catechol 1, 2-dioxygenase activity were selected from 112 bacterial strains. The conditions for enzyme production of the strains were examined. The optimal temperature and pH for enzyme formation were 30 degrees C and pH 6.8-7.0 respectively. Enzyme formation was enhanced by sodium benzoate, and was markedly inhibited by glucose, maltose and glycerol. Ammoniacal nitrogen sources were essential for cell growth and enzyme production. Sodium succinate was an effective inducer for enzyme formation. When the organism was grown in 0.15% sodium benzoate medium (pH 6.8-7.0) at 30 degrees C for 72 hours, about 10 units of catechol 1,2 dioxygenase per ml was obtained.  相似文献   
84.
Genetic analysis for germline mutations of RET proto‐oncogene has provided a basis for individual management of medullary thyroid carcinoma (MTC) and pheochromocytoma. Most of compound mutations have more aggressive phenotypes than single point mutations, but the compound C634Y/V292M variant in MTC has never been reported. Thus, we retrospectively investigated synergistic effect of C634Y and V292M RET germline mutations in family members with multiple endocrine neoplasia type 2A. Nine of 14 family members in a northern Chinese family underwent RET mutation screening using next‐generation sequencing and PCR followed by direct bidirectional DNA sequencing. Clinical features of nine individuals were retrospectively carefully reviewed. In vitro, the scratch‐wound assay was used to investigate the difference between the cells carrying different mutations. We find no patients died of MTC. All 3 carriers of the V292M variant were asymptomatic and did not have biochemical or structural evidence of disease (age: 82, 62 and 58). Among 4 C634Y mutation carriers, 2 patients had elevated calcitonin with the highest (156 pg/mL) in an 87‐year‐old male. Two carriers of compound C634Y/V292M trans variant had bilateral MTC with pheochromocytoma or lymph node metastasis (age: 54 and 41 years, respectively). Further, the compound C634Y/V292M variant had a faster migration rate than either single point mutation in vitro (P < .05). In conclusion, the V292M RET variant could be classified as ‘likely benign’ according to ACMG (2015). The compound variant V292M/C634Y was associated with both more aggressive clinical phenotype and faster cell growth in vitro than was either single mutation.  相似文献   
85.
Several chemicals present in cigarette smoke (CS) have been reported to induce heme oxygenase‐1 (HO‐1) expression, which represents a prime defense mechanism in protecting the cells from stress‐dependent adverse effects on peripheral vascular system. However, the effects of cigarette smoke extract (CSE) on HO‐1 induction and the mechanisms underlying CSE‐induced HO‐1 expression in brain vessels are not completely understood. Here, we used a mouse brain endothelial cell culture (bEnd.3) to investigate the effect of CSE on HO‐1 induction and the mechanisms underlying CSE‐induced HO‐1 expression in cerebral vessels. We demonstrated that sublethal concentrations of CSE (30 µg/ml) induced submaximal HO‐1 expression in bEnd.3 cells. NADPH oxidase‐dependent ROS generation played a key role in CSE‐induced HO‐1 expression. CSE‐induced HO‐1 expression was mediated through PDGFR/JAK2/STAT3 cascade, which was observed by pretreatment with the respective pharmacological inhibitors or transfection with PDGFR shRNA. CSE activated NADPH oxidase through c‐Src in bEnd.3 cells. Taken together, these results suggested that, in bEnd.3 cells, CSE‐induced HO‐1 expression was mediated through PDGFR/JAK2/STAT3 cascade, which was regulated by c‐Src or c‐Src activated‐NADPH oxidase/ROS. J. Cell. Physiol. 225: 741–750, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
86.
A growing organism that produces antibiotic peptide was incubated with L-(U-14C)serine for labeling linear gramicidin. Linear gramicidin was isolated by a simple chromatographic method from tyrothricin (mixture of linear gramicidin and tyrocidine) applied to a column of basic aluminum oxide. The hydrolysate of labeled linear gramicidin on thin layer chromatography showed that L-(U-14C)serine was one of a precursor of ethanolamine moiety by autoradiography. L-(3-14C)serine generated formic acid in the presence of tetrahydrofolic acid by an enzyme fraction prepared with ammonium sulfate, and further formed ethanolamine binding to the protein. Formylvaline was biosynthesized by it with tetrahydrofolic acid and ATP, and subsequently released from the protein.  相似文献   
87.
88.
89.
Elucidating the chromatin dynamics that orchestrate embryogenesis is a fundamental question in developmental biology. Here, we exploit position effects on expression as an indicator of chromatin activity and infer the chromatin activity landscape in every lineaged cell during Caenorhabditis elegans early embryogenesis. Systems‐level analyses reveal that chromatin activity distinguishes cellular states and correlates with fate patterning in the early embryos. As cell lineage unfolds, chromatin activity diversifies in a lineage‐dependent manner, with switch‐like changes accompanying anterior–posterior fate asymmetry and characteristic landscapes being established in different cell lineages. Upon tissue differentiation, cellular chromatin from distinct lineages converges according to tissue types but retains stable memories of lineage history, contributing to intra‐tissue cell heterogeneity. However, the chromatin landscapes of cells organized in a left–right symmetric pattern are predetermined to be analogous in early progenitors so as to pre‐set equivalent states. Finally, genome‐wide analysis identifies many regions exhibiting concordant chromatin activity changes that mediate the co‐regulation of functionally related genes during differentiation. Collectively, our study reveals the developmental and genomic dynamics of chromatin activity at the single‐cell level.  相似文献   
90.

Background

Electrical stimulation (ES) has been proven to be an effective means of enhancing the speed and accuracy of nerve regeneration. However, these results were recorded when the procedure was performed almost immediately after nerve injury. In clinical settings, most patients cannot be treated immediately. Some patients with serious trauma or contaminated wounds need to wait for nerve repair surgery. Delays in nerve repair have been shown to be associated with poorer results than immediate surgery. It is not clear whether electrical stimulation still has any effect on nerve regeneration after enough time has elapsed.

Methods

A delayed nerve repair model in which the rats received delayed nerve repair after 1 day, 1 week, 1 month, and 2 months was designed. At each point in time, the nerve stumps of half the rats were bridged with an absorbable conduit and the rats were given 1 h of weak electrical stimulation. The other half was not treated. In order to analyze the morphological and molecular differences among these groups, 6 ES rats and 6 sham ES rats per point in time were killed 5 days after surgery. The other rats in each group were allowed to recover for 6 weeks before the final functional test and tissue observation.

Results

The amounts of myelinated fibers in the distal nerve stumps decreased as the delay in repair increased for both ES rats and sham ES rats. In the 1-day-delay and 1-week-delay groups, there were more fibers in ES rats than in sham ES rats. And the compound muscle action potential (CMAP) and motor nerve conduction velocity (MNCV) results were better for ES rats in these two groups. In order to analyze the mechanisms underlying these differences, Masson staining was performed on the distal nerves and quantitative PCR on the spinal cords. Results showed that, after delays in repair of 1 month and 2 months, there was more collagen tissue hyperplasia in the distal nerve in all rats. The brain-derived neurotrophic factor (BDNF) and trkB expression levels in the spinal cords of ES rats were higher than in sham ES rats. However, these differences decreased as the delay in repair increased.

Conclusions

Electrical stimulation does not continue to promote nerve regeneration after long delays in nerve repair. The effective interval for nerve regeneration after delayed repair was found to be less than 1 month. The mechanism seemed to be related to the expression of nerve growth factors and regeneration environment in the distal nerves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号