首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   860篇
  免费   56篇
  916篇
  2023年   2篇
  2022年   13篇
  2021年   17篇
  2020年   8篇
  2019年   7篇
  2018年   11篇
  2017年   18篇
  2016年   15篇
  2015年   30篇
  2014年   40篇
  2013年   77篇
  2012年   52篇
  2011年   55篇
  2010年   28篇
  2009年   24篇
  2008年   40篇
  2007年   43篇
  2006年   45篇
  2005年   35篇
  2004年   49篇
  2003年   36篇
  2002年   22篇
  2001年   16篇
  2000年   21篇
  1999年   18篇
  1998年   18篇
  1997年   5篇
  1996年   9篇
  1995年   5篇
  1994年   13篇
  1993年   13篇
  1992年   22篇
  1991年   14篇
  1990年   13篇
  1989年   6篇
  1988年   5篇
  1987年   8篇
  1986年   10篇
  1985年   9篇
  1984年   12篇
  1983年   2篇
  1982年   5篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
排序方式: 共有916条查询结果,搜索用时 15 毫秒
71.
72.
Two new lindenane sesquiterpene dimers, spicachlorantins A and B (1 and 2), were isolated from the roots of Chloranthus spicatus along with a known related compound, chloramultilide A (3). Their structures and the absolute stereostructures were established by 1D and 2D NMR as well as by CD spectroscopic analyses.  相似文献   
73.
Housaku Monogatari (HM) is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA) pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods.  相似文献   
74.
Geminin is a protein involved in both DNA replication and cell fate acquisition. Although it is essential for mammalian preimplantation development, its role remains unclear. In one study, ablation of the geminin gene (Gmnn) in mouse preimplantation embryos resulted in apoptosis, suggesting that geminin prevents DNA re-replication, whereas in another study it resulted in differentiation of blastomeres into trophoblast giant cells (TGCs), suggesting that geminin regulates trophoblast specification and differentiation. Other studies concluded that trophoblast differentiation into TGCs is regulated by fibroblast growth factor-4 (FGF4), and that geminin is required to maintain endocycles. Here we show that ablation of Gmnn in trophoblast stem cells (TSCs) proliferating in the presence of FGF4 closely mimics the events triggered by FGF4 deprivation: arrest of cell proliferation, formation of giant cells, excessive DNA replication in the absence of DNA damage and apoptosis, and changes in gene expression that include loss of Chk1 with up-regulation of p57 and p21. Moreover, FGF4 deprivation of TSCs reduces geminin to a basal level that is required for maintaining endocycles in TGCs. Thus, geminin acts both like a component of the FGF4 signal transduction pathway that governs trophoblast proliferation and differentiation, and geminin is required to maintain endocycles.  相似文献   
75.
Serum soluble interferon-α/β receptor (sIFN-α/βR) and high-sensitivity C-reactive protein (hs-CRP) levels were evaluated in the patients with gastrointestinal and hepatobiliary-pancreatic cancer. We compared the sensitivity and specificity of serum sIFN-α/βR with that of serum hs-CRP and evaluated the two diagnostic parameters in combination. Serum sIFN-α/βR levels were measured in 92 patients and 25 healthy individuals by enzyme-linked immunosorbent assay. The diagnoses were 37 cases of hepatocellular carcinoma, 17 cases of pancreatic cancer, 15 cases of colon cancer, 13 cases of biliary tract cancer, and 10 cases of gastric cancer. Serum levels of sIFN-α/βR and hs-CRP were significantly higher in the patients than in healthy individuals (p < 0.05). The optimal cut-off values of sIFN-α/βR and hs-CRP were 3600 pg/ml and 0.5 μg/ml, respectively. The sensitivity and specificity for these thresholds were 94.6% and 88.0%, whereas positive predictive and negative predictive values were 96.7% and 81.5%. These results suggest that a combination of serum sIFN-α/βR and hs-CRP thresholds may be more reliable diagnostic parameter for gastrointestinal and hepatobiliary-pancreatic cancer.  相似文献   
76.
In rice, light is known to inhibit the growth of coleoptiles and seminal roots of seedlings through phytochrome. Here we investigated the light-induced growth inhibition of seminal roots and compared the results with those recently determined for coleoptiles. Although three rice phytochromes, phyA, phyB and phyC functioned in a similar manner in coleoptile and seminal root, the Bunsen-Roscoe law of reciprocity was not observed in the growth inhibition of seminal root. We also found coiling of the seminal root at the root tip which appeared to be associated with the photoinhibition of seminal root growth. This could be a new light-induced phenomenon in certain cultivars of rice.Key words: growth, hypocotyl, Oryza sativa, phytochrome, seminal rootPhytochrome-mediated growth inhibition was reported for both coleoptiles and seminal roots of rice seedlings in the same year by two research groups in Nagoya and Tohoku University in Japan, respectively.1,2 Forty years after the findings, a detailed photobiological study was carried out for the coleoptile growth inhibition.3 In this study, we examined photoinhibition of seminal root growth, and found similarities and differences between light-induced growth inhibition of the two organs in rice seedlings. Although coleoptile growth was inhibited by pulses of light, growth inhibition of seminal roots required light irradiation longer than 6 h. The Bunsen-Roscoe law of reciprocity was not observed in the growth inhibition of seminal root. Action spectra were determined for the growth inhibition of coleoptiles, and the mode of inhibition was found to depend on the age of the coleoptiles. At the early stage of development [40 h after inducing germination (AIG)], photoinhibition was predominantly due to the phyB-mediated low-fluence response (LFR), but at the late developmental stage (80 h AIG), it consisted of the phyA-mediated very low-fluence response (VLFR) as well as the phyB-mediated LFR.3,4 In the case of root growth, the sensitivity of photoinhibition also depended on age, and was most sensitive in the period of 48–96 h AIG when seedlings were irradiated for 24 h. Using rice phytochrome mutants,5 we found that far-red light for root growth inhibition was perceived exclusively by phyA, that red light was perceived by both phyA and phyB, and that phyC had little or no role in growth inhibition. Furthermore, the fluence rate required for phyB-mediated inhibition was more than 10,000-fold greater than that required for phyA-mediated inhibition. These characteristics of photoinhibition in seminal roots are similar to those found in coleoptiles at the late stage of development.3 In seminal roots, photoinhibition appeared to be mediated by photoreceptors in the root itself.Interestingly, coiling of the root tips always occurred when root growth was inhibited under the light condition (Fig. 1B). Under continuous light irradiation, rice seeds germinated ∼30 h AIG. Seminal roots formed a coil at the root tips during the 48–96 h period AIG, and stopped growing. When they were irradiated for only 24 h on the 3rd day AIG, coils started to form just after the end of irradiation. The roots continued to coil for ∼28 h and then began growing straight again (Fig. 1C). The coils were larger and looser than those formed under continuous light condition (Fig. 1, Open in a separate windowFigure 1Light irradiation induces coiling of root tips in rice seedlings (Oryza sativa cv. Nipponbare). A rice seedling was grown in the dark (A), or in continuous white light (55 µole m−2 s−1) (B) for 7 d at 28°C. In (C), it was irradiated by white light for 24 h during the 48–72 h period after inducing germination, and kept in the dark again until the 7th day. Arrows and arrowheads indicate the seminal and crown roots, respectively. Seedlings were grown in glass tubes of 3-cm diameter.

Table 1

The size of coil of root tips formed after white light irradiation
Light irradiationDiameter* (mm)Length* (mm)Number of turns*
Continuous irradiation for 7 d1.96 ± 0.412.70 ± 0.634.6 ± 0.8
24 h-long irradiation during the 48–72 h period after inducing germination2.60 ± 0.443.33 ± 0.192.3 ± 0.5
Open in a separate window* Mean and SD of 4-7 seedlings.We also found that light exposure had an opposite effect on the growth of the seminal and crown roots of rice seedlings. Light inhibited the growth of seminal roots, whereas it promoted the growth of crown roots. In fact, light was found to promote growth of Arabidopsis primary roots, in which phyA and phyB were found to be responsible for photoperception as well as photosynthetic activity.6 In rice seedlings, growth orientation of the crown roots is also affected by light exposure, whereas growth orientation of the seminal roots is controlled solely by the gravity vector. The crown roots grow in a horizontal direction in the dark, while they grow toward the gravity vector in the light.7 The contrasting responses to light in the seminal and crown roots are likely to help the transition of rice seedlings from the embryonic root system, in which the seminal roots are predominant, to the fibrous root system, which contains numerous crown roots.  相似文献   
77.
We surveyed changes of the gene expression profile in caerulein-exposed pancreas using Affymetrix GeneChip system (39,000 genes). Up-regulation of genes coding for claudin 4, claudin 7, F11 receptor, cadherin 1, integrin beta 4, syndecan 1, heat shock proteins b1/90aa1, Serpinb6a, Serpinb6b, Serpinb9, Bax, Bak1, calpain 2, calpain 5, microtubule-associated protein 1 light chain 3 alpha, S100 calcium-binding proteins A4/A10 were found in mouse pancreas exposed to caerulein for 12 h. In contrast, the anti-apoptotic gene Bcl2 was down-regulated. The functions of these genes concern tight junction formation, cell-cell/cell-matrix adhesions, stress response, protease inhibition, apoptosis, autophagy, and regulation of cytoskeletal dynamics. Caerulein-exposed pancreatic acinar cells were immunohistochemically stained for claudin 4, cadherin 1, integrin beta 4, heat shock protein b1, and Serpinb6a. In conclusion, we have newly identified a set of genes that are likely to be involved in endogenous self-protection mechanisms against acute pancreatitis.  相似文献   
78.
The development of Parkinson’s disease is accompanied by concurrent activation of caspase-3 and apoptosis of dopaminergic neurons of human patients and rodent models. The role of caspase-3, a final executioner of apoptosis, in the pathogenesis of Parkinson’s disease, however, remains to be determined. Here, we show that gene disruption of caspase-3 protects mice from 1-methyle-4-phenyl-1,2,3,6-tetrahmydropyridine (MPTP)-induced Parkinsonian syndrome, as reflected by reversal of MPTP-induced bradykinesia and decreased tyrosine hydroxylase expression in the nigra-striatum. MPTP treatment resulted in increased caspase-3 activation and apoptosis in the substantia nigra of wild-type mice at 24 h after the inception of MPTP treatment, as compared with vehicle-treated control animals. Gene disruption of caspase-3 prevented MPTP-induced apoptosis in the substantia nigra. At 7 days after MPTP treatment, tyrosine hydroxylase expression was suppressed and infiltration of activated microglia and astrocytes was markedly increased in the nigra-striatum of wild-type mice. All of these alterations following MPTP treatment were blocked by disruption of caspase-3 in mice. These results clearly indicate that caspase-3 activation is required for the development of MPTP-induced Parkinson’s disease in mice. These findings suggest that activation of caspase-3-mediated apoptosis of dopaminergic neurons in the early stage may play an important role in the pathogenesis of Parkinson’s disease.  相似文献   
79.
80.
The mouse homeobox gene Otx2 plays essential roles at each step and in every tissue during head development. We have previously identified a series of enhancers that are responsible for driving the Otx2 expression in these contexts. Among them the AN enhancer, existing 92 kb 5' upstream, directs Otx2 expression in anterior neuroectoderm (AN) at the headfold stage. Analysis of the enhancer mutant Otx2(DeltaAN/-) indicated that Otx2 expression under the control of this enhancer is essential to the development of AN. This study demonstrates that the AN enhancer is promoter-dependent and regulated by acetylated YY1. YY1 binds to both the AN enhancer and promoter region. YY1 is acetylated in the anterior head, and only acetylated YY1 can bind to the sequence in the enhancer. Moreover, YY1 binding to both of these two sites is essential to Otx2 expression in AN. These YY1 binding sites are highly conserved in AN enhancers in tetrapods, coelacanth and skate, suggesting that establishment of the YY1 regulation coincides with that of OTX2 function in AN development in an ancestral gnathostome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号