首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   860篇
  免费   56篇
  916篇
  2023年   2篇
  2022年   13篇
  2021年   17篇
  2020年   8篇
  2019年   7篇
  2018年   11篇
  2017年   18篇
  2016年   15篇
  2015年   30篇
  2014年   40篇
  2013年   77篇
  2012年   52篇
  2011年   55篇
  2010年   28篇
  2009年   24篇
  2008年   40篇
  2007年   43篇
  2006年   45篇
  2005年   35篇
  2004年   49篇
  2003年   36篇
  2002年   22篇
  2001年   16篇
  2000年   21篇
  1999年   18篇
  1998年   18篇
  1997年   5篇
  1996年   9篇
  1995年   5篇
  1994年   13篇
  1993年   13篇
  1992年   22篇
  1991年   14篇
  1990年   13篇
  1989年   6篇
  1988年   5篇
  1987年   8篇
  1986年   10篇
  1985年   9篇
  1984年   12篇
  1983年   2篇
  1982年   5篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
排序方式: 共有916条查询结果,搜索用时 15 毫秒
31.
The fungal allergen, Alternaria, is specifically associated with severe asthma, including life-threatening exacerbations. To better understand the acute innate airway response to Alternaria, naive wild-type (WT) mice were challenged once intranasally with Alternaria. Naive WT mice developed significant bronchoalveolar lavage eosinophilia following Alternaria challenge when analyzed 24 h later. In contrast to Alternaria, neither Aspergillus nor Candida induced bronchoalveolar lavage eosinophilia. Gene microarray analysis of airway epithelial cell brushings demonstrated that Alternaria-challenged naive WT mice had a >20-fold increase in the level of expression of found in inflammatory zone 1 (FIZZ1/Retnla), a resistin-like molecule. Lung immunostaining confirmed strong airway epithelial FIZZ1 expression as early as 3 h after a single Alternaria challenge that persisted for ≥5 d and was significantly reduced in STAT6-deficient, but not protease-activated receptor 2-deficient mice. Bone marrow chimera studies revealed that STAT6 expressed in lung cells was required for epithelial FIZZ1 expression, whereas STAT6 present in bone marrow-derived cells contributed to airway eosinophilia. Studies investigating which cells in the nonchallenged lung bind FIZZ1 demonstrated that CD45(+)CD11c(+) cells (macrophages and dendritic cells), as well as collagen-1-producing CD45(-) cells (fibroblasts), can bind to FIZZ1. Importantly, direct administration of recombinant FIZZ1 to naive WT mice led to airway eosinophilia, peribronchial fibrosis, and increased thickness of the airway epithelium. Thus, Alternaria induces STAT6-dependent acute airway eosinophilia and epithelial FIZZ1 expression that promotes airway fibrosis and epithelial thickness. This may provide some insight into the uniquely pathogenic aspects of Alternaria-associated asthma.  相似文献   
32.
Sendai virus (hemagglutinating virus of Japan; HVJ) is a negative-strand RNA virus with robust fusion activity, and has been utilized for gene transfer and drug delivery. Hemagglutinin-neuraminidase (HN) protein on the viral membrane is important for cell fusion, but causes agglutination of red blood cells. HN-depleted HVJ has been desired for in vivo transfection in order to improve safety. Here, we succeeded in producing HN-depleted HVJ using HN-specific short interfering RNA (siRNA). Viral production was not affected by the siRNA. HN protein was markedly decreased in the new HVJ, while other viral proteins were retained. Consequently, the hemagglutinating activity was substantially reduced and infection activity was suppressed. When the HN-depleted HVJ was mixed with cultured cells and the mixture was centrifuged for 10min at 2000xg, the modified HVJ recovered its infectivity to approximately 80% of wild HVJ. However, infectivity was abolished in the presence of anti-F antibody. Moreover, transfection of FITC-labeled oligodeoxynucleotides using the modified HVJ was also recovered by centrifugation. Thus, the HN-depleted HVJ produced using siRNA technology will be applicable to a delivery vector.  相似文献   
33.
Abstract: Tumor necrosis factor-a (TNF-α), interferon-γ (IFN-7), and interleukin-6 (IL-6), but not TNF-β, can induce the in vitro differentiation of the neuroblastoma cell line N103 in a dose-dependent manner. Differentiation of N103 was accompanied by the arrest of cell growth and neurite formation. The induction of neuroblastoma cell differentiation by TNF-α and IFN-γ can be specifically inhibited by a nitric oxide (NO) synthase inhibitor, l -NG-monomethylarginine. In contrast, the differentiation of N103 cells by IL-6 was not affected by l -NG-monomethylarginine. These results indicate that TNF-α and IFN-γ, but not IL-6, induce the differentiation of neuroblastoma cells via NO. This is confirmed by the finding that the culture super- natants of N103 cells induced by TNF-α and IFN-γ, but not that by IL-6, contained high levels of NO2, the production of which was inhibited by l - N G-monomethylarginine. Furthermore, the differentiation of N103 cells can be induced directly in a dose-dependent manner by the addition of nitroprusside, a generator of NO, into the culture medium. These data therefore indicate that NO may be an important mediator in the induction of neuronal cell differentiation by certain cytokines such as TNF-α and IFN-γ and that neuronal cells, in addition to the macrophagelike brain cells, can be induced by immunological stimuli to produce large quantities of NO.  相似文献   
34.
A β-amylase and a pullulanase produced by Bacillus cereus var. mycoides were purified by means of ammonium sulfate fractionation, adsorption on starch and celite and Sephadex G–100 column chromatography. The purified enzymes were homogeneous in disc electrophoresis.

The β-amylase released only maltose from amylose, amylopectin, starch and glycogen, and the released maltose was in β-form. The pullulanase released maltose, maltotriose and maltotetraose from β-limit dextrin and maltotriose from pullulan, but not amylose-like substance from amylopectin.

The optimum pHs of β-amylase and pullulanase were about 7 and 6~6.5, respectively. The optimum temperatures of the enzymes were about 50°C. The enzymes were inhibited by the sulfhydryl reagents such as mercuric chloride and p-chloromercuribenzoate, and the inhibitions with p-chloromercuribenzoate were restored by the addition of cysteine. The molecular weights of β-amylase and pullulanase were estimated to be 35,000±5,000 and 110,000±20,000, respectively.  相似文献   
35.
Sophoradin (I) [2′,4,4′-trihydroxy-3,3′,5-tris(3-methyl-2-butenyl)chalcone] which had been isolated from “Guang-Dou-Gen” (the root of Sophora subprostrata Chun et T. Chen) was synthesized through Claisen rearrangement. The reaction of p-hydroxybenzaldehyde and 3-chloro-3-methyl-1-butyne (III) gave 4-(1,1-dimethylpropargyloxy)benzaldehyde (VIII), which was catalytically hydrogenated over Lindlar catalyst to afford 4-(1,1-dimethylallyloxy)benzaldehyde (IX). IX was converted to 4-hydroxy-3-(3-methyl-2-butenyl)benzaldehyde (X) by Claisen rearrangement. The reaction of X and III gave 3-(3-methyl-2-butenyl)-4-(1,1-dimethylpropargyloxy)benzaldehyde (XI). Condensation of 2-hydroxy-4-(1,1-dimethylpropargyloxy)acetophenone (IV) and XI in alkaline solution gave a chalcone (XIII), which was catalytically hydrogenated over Lindlar catalyst to give 2′-hydroxy-4,4′-bis(1,-dimethylallyloxy)-3-(3-methyl-2-butenyl)chalcone (XIV). XIV was converted to I by Claisen rearrangement.  相似文献   
36.
Nanometry is widely used in biological sciences to analyze the movement of molecules or molecular assemblies in cells and in vivo. In cardiac muscle, a change in sarcomere length (SL) by a mere ∼100 nm causes a substantial change in contractility, indicating the need for the simultaneous measurement of SL and intracellular Ca2+ concentration ([Ca2+]i) in cardiomyocytes at high spatial and temporal resolution. To accurately analyze the motion of individual sarcomeres with nanometer precision during excitation–contraction coupling, we applied nanometry techniques to primary-cultured rat neonatal cardiomyocytes. First, we developed an experimental system for simultaneous nanoscale analysis of single sarcomere dynamics and [Ca2+]i changes via the expression of AcGFP in Z discs. We found that the averaging of the lengths of sarcomeres along the myocyte, a method generally used in today’s myocardial research, caused marked underestimation of sarcomere lengthening speed because of the superpositioning of different timings for lengthening between sequentially connected sarcomeres. Then, we found that after treatment with ionomycin, neonatal myocytes exhibited spontaneous sarcomeric oscillations (cell-SPOCs) at partial activation with blockage of sarcoplasmic reticulum functions, and the waveform properties were indistinguishable from those obtained in electric field stimulation. The myosin activator omecamtiv mecarbil markedly enhanced Z-disc displacement during cell-SPOC. Finally, we interpreted the present experimental findings in the framework of our mathematical model of SPOCs. The present experimental system has a broad range of application possibilities for unveiling single sarcomere dynamics during excitation–contraction coupling in cardiomyocytes under various settings.  相似文献   
37.
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) transforms rodent fibroblasts and is expressed in most EBV-associated malignancies. LMP1 (transformation effector site 2 [TES2]/C-terminal activation region 2 [CTAR2]) activates NF-κB, p38, Jun N-terminal protein kinase (JNK), extracellular signal-regulated kinase (ERK), and interferon regulatory factor 7 (IRF7) pathways. We have investigated LMP1 TES2 genome-wide RNA effects at 4 time points after LMP1 TES2 expression in HEK-293 cells. By using a false discovery rate (FDR) of <0.001 after correction for multiple hypotheses, LMP1 TES2 caused >2-fold changes in 1,916 mRNAs; 1,479 RNAs were upregulated and 437 were downregulated. In contrast to tumor necrosis factor alpha (TNF-α) stimulation, which transiently upregulates many target genes, LMP1 TES2 maintained most RNA effects through the time course, despite robust and sustained induction of negative feedback regulators, such as IκBα and A20. LMP1 TES2-regulated RNAs encode many NF-κB signaling proteins and secondary interacting proteins. Consequently, many LMP1 TES2-regulated RNAs encode proteins that form an extensive interactome. Gene set enrichment analyses found LMP1 TES2-upregulated genes to be significantly enriched for pathways in cancer, B- and T-cell receptor signaling, and Toll-like receptor signaling. Surprisingly, LMP1 TES2 and IκBα superrepressor coexpression decreased LMP1 TES2 RNA effects to only 5 RNAs, with FDRs of <0.001-fold and >2-fold changes. Thus, canonical NF-κB activation is critical for almost all LMP1 TES2 RNA effects in HEK-293 cells and a more significant therapeutic target than previously appreciated.  相似文献   
38.
Selective autophagy of bacterial pathogens represents a host innate immune mechanism. Selective autophagy has been characterized on the basis of distinct cargo receptors but the mechanisms by which different cargo receptors are targeted for autophagic degradation remain unclear. In this study we identified a highly conserved Tectonin domain-containing protein, Tecpr1, as an Atg5 binding partner that colocalized with Atg5 at Shigella-containing phagophores. Tecpr1 activity is necessary for efficient autophagic targeting of bacteria, but has no effect on rapamycin- or starvation-induced canonical autophagy. Tecpr1 interacts with WIPI-2, a yeast Atg18 homolog and PI(3)P-interacting protein required for phagophore formation, and they colocalize to phagophores. Although Tecpr1-deficient mice appear normal, Tecpr1-deficient MEFs were defective for selective autophagy and supported increased intracellular multiplication of Shigella. Further, depolarized mitochondria and misfolded protein aggregates accumulated in the Tecpr1-knockout MEFs. Thus, we identify a Tecpr1-dependent pathway as important in targeting bacterial pathogens for selective autophagy.  相似文献   
39.
Gangliosides (sialic acid-containing glycosphingolipids) play important roles in many physiological functions, including synaptic plasticity in the hippocampus, which is considered as a cellular mechanism of learning and memory. In the present study, three types of synaptic plasticity, long-term potentiation (LTP), long-term depression (LTD) and reversal of LTP (depotentiation, DP), in the field excitatory post-synaptic potential in CA1 hippocampal neurons and learning behavior were examined in β1,4-N-acetylgalactosaminyltransferase (β1,4 GalNAc-T; GM2/GD2 synthase) gene transgenic (TG) mice, which showed a marked decrease in b-pathway gangliosides (GQ1b, GT1b and GD1b) in the brain and isolated hippocampus compared with wild-type (WT) mice. The magnitude of the LTP induced by tetanus (100 pulses at 100?Hz) in TG mice was significantly smaller than that in control WT mice, whereas there was no difference in the magnitude of the LTD induced by three short trains of low-frequency stimulation (LFS) (200 pulses at 1?Hz) at 20?min intervals between the two groups of mice. The reduction in the LTP produced by delivering three trains of LFS (200 pulses at 1?Hz, 20?min intervals) was significantly greater in the TG mice than in the WT mice. Learning was impaired in the four-pellet taking test (4PTT) in TG mice, with no significant difference in daily activity or activity during the 4PTT between TG and WT mice. These results suggest that the overexpression of β1,4 GalNAc-T resulted in altered synaptic plasticity of LTP and DP in hippocampal CA1 neurons and learning in the 4PTT, and this is attributable to the shift from b-pathway gangliosides to a-pathway gangliosides.  相似文献   
40.
The specific binding of 125I-sarafotoxin S6b was observed in the microsomal fractions from porcine thoracic aorta, and two vasoconstrictive peptides with strikingly homologous structures, sarafotoxin (SRT) and endothelin (ET), interact with a common receptor of the vasculature. The order of the potency of an each endothelin or sarafotoxin analogue as a competitor against 125I-sarafotoxin S6b binding was ET-1 greater than ET-2 greater than SRT S6b greater than ET-3 much greater than SRT S6c. The hydrophobic carboxyl-terminal tail and intramolecular disulfide bridges are essential for the binding activity. In addition, Ser4, Ser5 and Lys9 seem to be important for the activity while the 6th residue does not affect the activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号