首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1881篇
  免费   118篇
  国内免费   2篇
  2001篇
  2022年   9篇
  2021年   16篇
  2020年   9篇
  2019年   21篇
  2018年   25篇
  2017年   28篇
  2016年   33篇
  2015年   65篇
  2014年   48篇
  2013年   128篇
  2012年   117篇
  2011年   127篇
  2010年   65篇
  2009年   71篇
  2008年   115篇
  2007年   105篇
  2006年   99篇
  2005年   119篇
  2004年   123篇
  2003年   99篇
  2002年   104篇
  2001年   29篇
  2000年   17篇
  1999年   27篇
  1998年   28篇
  1997年   19篇
  1996年   16篇
  1995年   16篇
  1994年   21篇
  1993年   11篇
  1992年   21篇
  1991年   10篇
  1990年   14篇
  1989年   16篇
  1988年   15篇
  1987年   17篇
  1986年   21篇
  1985年   9篇
  1983年   9篇
  1982年   10篇
  1980年   10篇
  1979年   12篇
  1978年   15篇
  1976年   10篇
  1975年   11篇
  1972年   7篇
  1971年   7篇
  1970年   16篇
  1969年   10篇
  1968年   10篇
排序方式: 共有2001条查询结果,搜索用时 11 毫秒
51.
Iron, a source of oxidative stress, plays a major role in the pathology of neurodegenerative disease. In Alzheimer's disease, the hippocampus is vulnerable to oxidative stress, leading to impairment in memory formation. In our previous study, a brain oxidative reaction was induced after intraperitoneal injection of ferric nitrilotriacetate (Fe-NTA). However, since only a small amount of iron reached the brain in the previous study, Fe-NTA was administered into the hippocampus using an osmotic pump in this study. After continuous injection of Fe-NTA for 2 weeks, a high level of apoptotic change was induced in the hippocampus, in accordance with the iron localization. After injection for 4 weeks, the hippocampus was totally destroyed. A small amount of iron infiltrated into the cerebral cortex and the striatum, and deposition was observed at the choroid plexus and ependymal cells. However, no apoptotic reaction or clear tissue injury was observed in these areas. In addition, muscarinic acetylcholine receptors (M1, M2, and M4) were decreased in both the cortex and hippocampus while it increased in the striatum. Thus, the hippocampus is likely vulnerable to oxidative stress from Fe-NTA, and the oxidative stress is considered to bring the disturbance in the muscarinic acetylcholine receptors.  相似文献   
52.
The question of the extent to which cytosolic Ca(2+) affects sinoatrial node pacemaker activity has been discussed for decades. We examined this issue by analyzing two mathematical pacemaker models, based on the "Ca(2+) clock" (C) and "membrane clock" (M) hypotheses, together with patch-clamp experiments in isolated guinea pig sinoatrial node cells. By applying lead potential analysis to the models, the C mechanism, which is dependent on potentiation of Na(+)/Ca(2+) exchange current via spontaneous Ca(2+) release from the sarcoplasmic reticulum (SR) during diastole, was found to overlap M mechanisms in the C model. Rapid suppression of pacemaker rhythm was observed in the C model by chelating intracellular Ca(2+), whereas the M model was unaffected. Experimental rupturing of the perforated-patch membrane to allow rapid equilibration of the cytosol with 10 mM BAPTA pipette solution, however, failed to decrease the rate of spontaneous action potential within ~30 s, whereas contraction ceased within ~3 s. The spontaneous rhythm also remained intact within a few minutes when SR Ca(2+) dynamics were acutely disrupted using high doses of SR blockers. These experimental results suggested that rapid disruption of normal Ca(2+) dynamics would not markedly affect spontaneous activity. Experimental prolongation of the action potentials, as well as slowing of the Ca(2+)-mediated inactivation of the L-type Ca(2+) currents induced by BAPTA, were well explained by assuming Ca(2+) chelation, even in the proximity of the channel pore in addition to the bulk cytosol in the M model. Taken together, the experimental and model findings strongly suggest that the C mechanism explicitly described by the C model can hardly be applied to guinea pig sinoatrial node cells. The possible involvement of L-type Ca(2+) current rundown induced secondarily through inhibition of Ca(2+)/calmodulin kinase II and/or Ca(2+)-stimulated adenylyl cyclase was discussed as underlying the disruption of spontaneous activity after prolonged intracellular Ca(2+) concentration reduction for >5 min.  相似文献   
53.
MOTIVATION: BioPAX is a standard language for representing and exchanging models of biological processes at the molecular and cellular levels. It is widely used by different pathway databases and genomics data analysis software. Currently, the primary source of BioPAX data is direct exports from the curated pathway databases. It is still uncommon for wet-lab biologists to share and exchange pathway knowledge using BioPAX. Instead, pathways are usually represented as informal diagrams in the literature. In order to encourage formal representation of pathways, we describe a software package that allows users to create pathway diagrams using CellDesigner, a user-friendly graphical pathway-editing tool and save the pathway data in BioPAX Level 3 format. AVAILABILITY: The plug-in is freely available and can be downloaded at ftp://ftp.pantherdb.org/CellDesigner/plugins/BioPAX/ CONTACT: huaiyumi@usc.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   
54.
Morphinan derivatives lacking the 4,5-epoxy ring were synthesized to examine the participation of the 14-OH group, the 3-OMe group, and the aromaticity of the A-ring in the activity and selectivity for the orexin 1 receptor (OX1R). The assay results and the conformational analyses of the 14-dehydrated and 14-H derivatives suggested that the orientations of the 6-amide side chain and the 17-benzenesulfonyl group would play important roles in the activity for OX1R. In the 6β-derivatives, removal of the 3-OMe group and the reduction of the A-ring significantly decreased the activity toward the OX1R, but these changes did not affect the 6α-derivatives. These results indicate that the 3-OMe group and the A-ring would be essential structural moieties for the 6β-derivatives.  相似文献   
55.
Aims The aims of this study were to compare the fungal communities developing on cotton strips at three different altitudes on the Tibetan Plateau and to assess the environmental variables influencing them.Methods Cotton strips that had been buried in soil for a year were sampled at three sites at different altitudes (4500, 4950 and 5200 m) located on a southeast-facing slope on the Nyainqentanglha Mountains near Damxung. The fungi on the cotton strips were isolated using a modified washing method. The decomposition abilities and colony growth properties of the major species cultured in pure-culture conditions were investigated and compared. Canonical correspondence analysis (CCA) was used to evaluate the relationships between fungal community composition and environmental variables (altitude, soil depth, soil water content [SWC], plant root mass and gravel content).Important findings A total of 24 species were isolated from the cotton strips, and 12 species occurred frequently and were regarded as major species. The number of fungal species was lower at the 4950-m altitude site than at the other two sites, indicating that not only altitude but also other factors affected the number of species present. All of the major species were able to decompose the cotton strips. In the CCA ordination, automatic forward selection revealed that altitude, SWC and plant root mass significantly affected fungal species composition. Our results suggest that species number and the composition of cellulolytic fungal communities are highly correlated with environmental variables as well as altitude in the alpine meadow on the Tibetan Plateau.  相似文献   
56.
We updated a database of microsatellite marker polymorphisms found in inbred strains of the mouse, most of which were derived from the wild stocks of four Mus musculus subspecies, M. m. domesticus, M. m. musculus, M. m.castaneus and M. m. molossinus. The major aim of constructing this database was to establish the genetic status of these inbred strains as resources for linkage analysis and positional cloning. The inbred strains incorporated in our database are A/J, C57BL/6J, CBA/J, DBA/2J, SM/J, SWR/J, 129Sv/J, MSM/Ms, JF1/Ms, CAST/Ei, NC/Nga, BLG2/Ms, NJL/Ms, PGN2/Ms, SK/CamEi and SWN/Ms, which have not or have only been poorly incorporated in the Whitehead Institute/MIT (WI/MIT) microsatellite database. The number of polymorphic microsatellite loci incorporated in our database is over 1,000 in all strains, and the URL site for our database is located at http:// www.shigen.nig.ac.jp /mouse/mmdbj/mouse.html.  相似文献   
57.
58.
The purpose of this report was to determine the effect of prion protein (PrP) gene disruption on T lymphocyte function. Previous studies have suggested that normal cellular prion protein (PrP(c)) binds to copper and Cu(2+) is essential for interleukin-2 (IL-2) mRNA synthesis. In this study, IL-2 mRNA levels in a copper-deficient condition were investigated using T lymphocytes from prion protein gene-deficient (PrP(0/0)) and wild-type mice. Results showed that Cu(2+) deficiency had no effect on PrP(c) expression in Con A-activated splenocytes. However, a delay in IL-2 gene expression was observed in PrP(0/0) mouse T lymphocyte cultures using Con A and Cu(2+)-chelator. These results suggest that PrP(c) expression may play an important role in rapid Cu(2+) transfer in T lymphocytes. The rapid transfer of Cu(2+) in murine T lymphocytes could be one of the normal functions of PrP(c).  相似文献   
59.
The Rinshoken cataract (rct) mutation, which causes congenital cataracts, is a recessive mutation found in SJL/J mice. All mutants present with opacity in the lens by 2?months of age. The rct locus was mapped to a 1.6-Mb region in Chr 4 that contains the Foxe3 gene. This gene is responsible for cataracts in humans and mice, and it plays a crucial role in the development of the lens. Furthermore, mutation of Foxe3 causes various ocular defects. We sequenced the genomic region of Foxe3, including the coding exons and UTRs; however, no mutations were discovered in these regions. Because there were no differences in Foxe3 sequences between the rct/rct and wild-type mice, we inferred that a mutation was located in the regulatory regions of the Foxe3 gene. To test this possibility, we sequenced a 5' noncoding region that is highly conserved among vertebrates and is predicted to be the major enhancer of Foxe3. This analysis revealed a deletion of 22-bp located approximately 3.2-kb upstream of the start codon of Foxe3 in rct mice. Moreover, we demonstrated by RT-PCR and in situ hybridization that the rct mutant has reduced expression of Foxe3 in the lens during development. We therefore suggest that cataracts in rct mice are caused by reduced Foxe3 expression in the lens and that this decreased expression is a result of a deletion in a cis-acting regulatory element.  相似文献   
60.
To clarify the mechanisms underlying the pancreatic β-cell response to varying glucose concentrations ([G]), electrophysiological findings were integrated into a mathematical cell model. The Ca(2+) dynamics of the endoplasmic reticulum (ER) were also improved. The model was validated by demonstrating quiescent potential, burst-interburst electrical events accompanied by Ca(2+) transients, and continuous firing of action potentials over [G] ranges of 0-6, 7-18, and >19 mM, respectively. These responses to glucose were completely reversible. The action potential, input impedance, and Ca(2+) transients were in good agreement with experimental measurements. The ionic mechanisms underlying the burst-interburst rhythm were investigated by lead potential analysis, which quantified the contributions of individual current components. This analysis demonstrated that slow potential changes during the interburst period were attributable to modifications of ion channels or transporters by intracellular ions and/or metabolites to different degrees depending on [G]. The predominant role of adenosine triphosphate-sensitive K(+) current in switching on and off the repetitive firing of action potentials at 8 mM [G] was taken over at a higher [G] by Ca(2+)- or Na(+)-dependent currents, which were generated by the plasma membrane Ca(2+) pump, Na(+)/K(+) pump, Na(+)/Ca(2+) exchanger, and TRPM channel. Accumulation and release of Ca(2+) by the ER also had a strong influence on the slow electrical rhythm. We conclude that the present mathematical model is useful for quantifying the role of individual functional components in the whole cell responses based on experimental findings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号