全文获取类型
收费全文 | 563篇 |
免费 | 19篇 |
专业分类
582篇 |
出版年
2024年 | 2篇 |
2023年 | 7篇 |
2022年 | 6篇 |
2021年 | 14篇 |
2020年 | 6篇 |
2019年 | 7篇 |
2018年 | 16篇 |
2017年 | 12篇 |
2016年 | 22篇 |
2015年 | 19篇 |
2014年 | 37篇 |
2013年 | 29篇 |
2012年 | 33篇 |
2011年 | 54篇 |
2010年 | 24篇 |
2009年 | 19篇 |
2008年 | 17篇 |
2007年 | 30篇 |
2006年 | 27篇 |
2005年 | 26篇 |
2004年 | 31篇 |
2003年 | 12篇 |
2002年 | 16篇 |
2001年 | 10篇 |
2000年 | 10篇 |
1999年 | 10篇 |
1998年 | 4篇 |
1997年 | 3篇 |
1995年 | 3篇 |
1994年 | 2篇 |
1993年 | 3篇 |
1992年 | 3篇 |
1991年 | 4篇 |
1990年 | 6篇 |
1989年 | 14篇 |
1988年 | 9篇 |
1987年 | 4篇 |
1986年 | 5篇 |
1985年 | 3篇 |
1984年 | 2篇 |
1983年 | 3篇 |
1979年 | 3篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1972年 | 1篇 |
1971年 | 2篇 |
1970年 | 3篇 |
1969年 | 1篇 |
1967年 | 1篇 |
1965年 | 1篇 |
排序方式: 共有582条查询结果,搜索用时 0 毫秒
81.
82.
Theory predicts that plants should employ constitutive (fixed) defenses when herbivory is consistently strong among years and induced (plastic) defenses when herbivory varies among years but is predictable within a season. We tested this theory by examining the herbivore species and damage censused over three seasons for 20 populations of wild radish in northern California. We conducted assays of constitutive resistance by challenging undamaged plants from these 20 populations with their common herbivores in the greenhouse. We assayed induced resistance by comparing the performance of herbivores on plants that had been experimentally damaged to undamaged plants from the same populations. Following damage, plants generally became more resistant to chewing herbivores (caterpillars) but more susceptible to sucking herbivores (aphids). Constitutive resistance to caterpillars was not stronger for populations that had high levels of herbivory that varied little among years, contrary to theory. Induced resistance may be stronger for plants from populations where herbivory varied more among years, consistent with expectations, although low power makes this conclusion equivocal. Induced resistance was not stronger for populations where early herbivory was a good predictor of late season herbivory. This lack of support for theory could have been caused by inadequacies with the experimental tests or with the theory and its assumptions. The theory assumes a coevolutionary equilibrium; however, high gene flow that has been reported for wild radish could disrupt matches between risk of herbivory and plant defense. The theory also assumes that resistance traits evolved as defenses against herbivory although these traits also serve other functions. Finally, the correlation we measured between early and late season herbivory may be at a temporal scale that is irrelevant since wild radish appears to adjust its defenses very rapidly. 相似文献
83.
Goda HM Ushigusa K Ito H Okino N Narimatsu H Ito M 《Biochemical and biophysical research communications》2008,375(4):441-446
We report here the molecular cloning, expression and characterization of a novel endo-alpha-N-acetylgalactosaminidase, classified into the GH101 family, from Enterococcus faecalis (endo-EF). The recombinant endo-EF was found to catalyze the liberation of core1-disaccharides (Galbeta1-3GalNAc) from core1-pNP (Galbeta1-3GalNAcalpha-pNP) like other GH101 family enzymes. However, endo-EF seems to differ in specificity from the GH101 enzymes reported to date, because it was able to release trisaccharides from core2-pNP (Galbeta1-3[GlcNAcbeta1-6]GalNAcalpha-pNP) and tetrasaccharides from Gal-core2-pNP (Galbeta1-3[Galbeta1-3GlcNAcbeta1-6]GalNAcalpha-pNP). Interestingly, the enzyme could transfer not only core1-disaccharides but also core2-trisaccharides to alkanols generating alkyl-oligosaccharides. Endo-EF should facilitate O-glycoprotein research. 相似文献
84.
85.
86.
A consensus linkage map for sugi (Cryptomeria japonica) from two pedigrees, based on microsatellites and expressed sequence tags 总被引:3,自引:0,他引:3
Tani N Takahashi T Iwata H Mukai Y Ujino-Ihara T Matsumoto A Yoshimura K Yoshimaru H Murai M Nagasaka K Tsumura Y 《Genetics》2003,165(3):1551-1568
A consensus map for sugi (Cryptomeria japonica) was constructed by integrating linkage data from two unrelated third-generation pedigrees, one derived from a full-sib cross and the other by self-pollination of F1 individuals. The progeny segregation data of the first pedigree were derived from cleaved amplified polymorphic sequences, microsatellites, restriction fragment length polymorphisms, and single nucleotide polymorphisms. The data of the second pedigree were derived from cleaved amplified polymorphic sequences, isozyme markers, morphological traits, random amplified polymorphic DNA markers, and restriction fragment length polymorphisms. Linkage analyses were done for the first pedigree with JoinMap 3.0, using its parameter set for progeny derived by cross-pollination, and for the second pedigree with the parameter set for progeny derived from selfing of F1 individuals. The 11 chromosomes of C. japonica are represented in the consensus map. A total of 438 markers were assigned to 11 large linkage groups, 1 small linkage group, and 1 nonintegrated linkage group from the second pedigree; their total length was 1372.2 cM. On average, the consensus map showed 1 marker every 3.0 cM. PCR-based codominant DNA markers such as cleaved amplified polymorphic sequences and microsatellite markers were distributed in all linkage groups and occupied about half of mapped loci. These markers are very useful for integration of different linkage maps, QTL mapping, and comparative mapping for evolutional study, especially for species with a large genome size such as conifers. 相似文献
87.
Takahashi S Sakurai K Ebihara A Kajiho H Saito K Kontani K Nishina H Katada T 《Nucleic acids research》2011,39(8):3446-3457
Cytoplasmic ribonucleoprotein granules, known as processing bodies (P-bodies), contain a common set of conserved RNA-processing enzymes, and mRNAs with AU-rich elements (AREs) are delivered to P-bodies for translational silencing. Although the dynamics of P-bodies is physically linked to cytoskeletal network, it is unclear how small GTPases are involved in the P-body regulation and the ARE-mRNA metabolism. We found here that glucose depletion activates RhoA GTPase and alters the P-body dynamics in HeLa cells. These glucose-depleted effects are reproduced by the overexpression of the RhoA-subfamily GTPases and conversely abolished by the inhibition of RhoA activation. Interestingly, both RhoA activation and glucose depletion inhibit the mRNA accumulation and degradation. These findings indicate that RhoA participates in the stress-induced rearrangement of P-bodies and the release of nucleated ARE-mRNAs for their stabilization. 相似文献
88.
Sasado T Morinaga C Niwa K Shinomiya A Yasuoka A Suwa H Hirose Y Yoda H Henrich T Deguchi T Iwanami N Watanabe T Kunimatsu S Osakada M Okamoto Y Kota Y Yamanaka T Tanaka M Kondoh H Furutani-Seiki M 《Mechanisms of development》2004,121(7-8):817-828
The development of germ cells has been intensively studied in Medaka (Oryzias latipes). We have undertaken a large-scale screen to identify mutations affecting the development of primordial germ cells (PGCs) in Medaka. Embryos derived from mutagenized founder fish were screened for an abnormal distribution or number of PGCs at embryonic stage 27 by RNA in situ hybridization for the Medaka vasa homologue (olvas). At this stage, PGCs coalesce into two bilateral vasa-expressing foci in the ventrolateral regions of the trunk after their migration and group organization. Nineteen mutations were identified from a screen corresponding to 450 mutagenized haploid genomes. Eleven of the mutations caused altered PGC distribution. Most of these alterations were associated with morphological abnormalities and could be grouped into four phenotypic classes: Class 1, PGCs dispersed into bilateral lines; Class 2, PGCs dispersed in a region more medial than that in Class 1; Class 3, PGCs scattered laterally and over the yolk sac area; and Class 4, PGCs clustered in a single median focus. Eight mutations caused a decrease in the number of PGCs. This decrease was observed in the offspring of heterozygous mothers, indicating the contribution of a maternal factor in determining PGC abundance. Taken together, these mutations should prove useful in identifying molecular mechanisms underlying the early PGC development and migration. 相似文献
89.
90.
Elizabeth A. Proctor Pradeep Kota Stephen J. Demarest Justin A. Caravella Nikolay V. Dokholyan 《Proteins》2013,81(5):884-895
The ability to generate and design antibodies recognizing specific targets has revolutionized the pharmaceutical industry and medical imaging. Engineering antibody therapeutics in some cases requires modifying their constant domains to enable new and altered interactions. Engineering novel specificities into antibody constant domains has proved challenging due to the complexity of inter‐domain interactions. Covarying networks of residues that tend to cluster on the protein surface and near binding sites have been identified in some proteins. However, the underlying role these networks play in the protein resulting in their conservation remains unclear in most cases. Resolving their role is crucial, because residues in these networks are not viable design targets if their role is to maintain the fold of the protein. Conversely, these networks of residues are ideal candidates for manipulating specificity if they are primarily involved in binding, such as the myriad interdomain interactions maintained within antibodies. Here, we identify networks of evolutionarily‐related residues in C‐class antibody domains by evaluating covariation, a measure of propensity with which residue pairs vary dependently during evolution. We computationally test whether mutation of residues in these networks affects stability of the folded antibody domain, determining their viability as design candidates. We find that members of covarying networks cluster at domain‐domain interfaces, and that mutations to these residues are diverse and frequent during evolution, precluding their importance to domain stability. These results indicate that networks of covarying residues exist in antibody domains for functional reasons unrelated to thermodynamic stability, making them ideal targets for antibody design. Proteins 2013. © 2012 Wiley Periodicals, Inc. 相似文献