首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3921篇
  免费   271篇
  2023年   14篇
  2022年   32篇
  2021年   58篇
  2020年   22篇
  2019年   29篇
  2018年   46篇
  2017年   42篇
  2016年   66篇
  2015年   110篇
  2014年   105篇
  2013年   192篇
  2012年   209篇
  2011年   197篇
  2010年   140篇
  2009年   146篇
  2008年   219篇
  2007年   199篇
  2006年   210篇
  2005年   203篇
  2004年   202篇
  2003年   200篇
  2002年   182篇
  2001年   136篇
  2000年   141篇
  1999年   115篇
  1998年   38篇
  1997年   29篇
  1996年   39篇
  1995年   43篇
  1994年   44篇
  1993年   39篇
  1992年   69篇
  1991年   66篇
  1990年   47篇
  1989年   47篇
  1988年   53篇
  1987年   44篇
  1986年   54篇
  1985年   38篇
  1984年   21篇
  1983年   34篇
  1982年   27篇
  1981年   18篇
  1980年   20篇
  1979年   27篇
  1978年   18篇
  1977年   18篇
  1975年   20篇
  1971年   12篇
  1969年   20篇
排序方式: 共有4192条查询结果,搜索用时 15 毫秒
991.
The aromatic composition of lignin is an important trait that greatly affects the usability of lignocellulosic biomass. We previously identified a rice (Oryza sativa) gene encoding coniferaldehyde 5‐hydroxylase (OsCAld5H1), which was effective in modulating syringyl (S)/guaiacyl (G) lignin composition ratio in rice, a model grass species. Previously characterized OsCAld5H1‐knockdown rice lines, which were produced via an RNA‐interference approach, showed augmented G lignin units yet contained considerable amounts of residual S lignin units. In this study, to further investigate the effect of suppression of OsCAld5H1 on rice lignin structure, we generated loss‐of‐function mutants of OsCAld5H1 using the CRISPR/Cas9‐mediated genome editing system. Homozygous OsCAld5H1‐knockout lines harboring anticipated frame‐shift mutations in OsCAld5H1 were successfully obtained. A series of wet‐chemical and two‐dimensional NMR analyses on cell walls demonstrated that although lignins in the mutant were predictably enriched in G units all the tested mutant lines produced considerable numbers of S units. Intriguingly, lignin γ‐p‐coumaroylation analysis by the derivatization followed by reductive cleavage method revealed that enrichment of G units in lignins of the mutants was limited to the non‐γ‐p‐coumaroylated units, whereas grass‐specific γ‐p‐coumaroylated lignin units were almost unaffected. Gene expression analysis indicated that no homologous genes of OsCAld5H1 were overexpressed in the mutants. These data suggested that CAld5H is mainly involved in the production of non‐γ‐p‐coumaroylated S lignin units, common in both eudicots and grasses, but not in the production of grass‐specific γ‐p‐coumaroylated S units in rice.  相似文献   
992.
Selective N-methyl-d-aspartate receptor subunit 2B (NR2B) antagonists show potential as analgesic drugs, and do not cause side effects associated with non-selective N-methyl-d-aspartate (NMDA) antagonists. Using a scaffold-hopping approach, we previously identified isoxazole derivative 4 as a potent selective NR2B antagonist. In this study, further scaffold hopping of isoxazole derivative 4 and optimization of its pharmacokinetic profile led to the discovery of the orally bioavailable compound 6v. In a rat study of analgesia, 6v demonstrated analgesic effects against neuropathic pain.  相似文献   
993.
Filamentous ascomycetous fungi possess many histidine kinases and two conserved response regulators, Ssk1p and Skn7p, in their two-component signaling systems. We previously reported that the fungus unique group III histidine kinase regulates high-osmolarity adaptation and iprodione/fludioxonil fungicide sensitivity by controlling the phosphorylation of Hog1-type mitogen-activated protein kinase (MAPK) in filamentous ascomycetes. Here, we have characterized the response regulator genes ChSsk1 and ChSkn7 in the southern corn leaf blight fungus Cochliobolus heterostrophus. Both ChSsk1- and ChSkn7-disrupted mutants showed little sensitivity to high-osmolarity stress and moderate resistance to the iprodione/fludioxonil fungicides. The phosphorylation of Hog1-type MAPK BmHog1p induced by high-osmolarity stress and fungicide treatments was only regulated by ChSsk1p, indicating that ChSkn7p has roles in high-osmolarity adaptation and fungicide sensitivity that are independent from the activation of BmHog1p. The Chssk1 Chskn7 double mutants clearly showed higher sensitivity to osmolar stress and higher resistance to fungicides than the single mutants. The dose responses of the double mutants fit well with those of the group III histidine kinase-deficient strain. These results suggest that in filamentous ascomycetes, the Ssk1- and Skn7-type response regulators control high-osmolarity adaptation and fungicide sensitivity additively with differential mechanisms under the regulation of the group III histidine kinase. This study provides evidence that filamentous fungi have a unique two-component signaling system that is different from that of yeast and is responsible for high-osmolarity adaptation and fungicide sensitivity.  相似文献   
994.
Histone H1 variant, H1R is involved in DNA damage response   总被引:2,自引:0,他引:2  
In Saccharomyces cerevisiae, the linker histone HHO1 is involved in DNA repair. In higher eukaryotes, multiple variants of linker histone H1 exist but their involvement in the DNA damage response is unknown. To address this issue, we examined sensitivity to genotoxic agents in chicken DT40 cells lacking specific H1 variants. Among the six H1 variant mutants, only H1R(-/-) DT40 cells exhibited increased sensitivity to the alkylating agent methyl-methanesulfonate (MMS). The MMS sensitivity of H1R(-/-) cells was not enhanced by inactivation of Rad54. H1R(-/-) DT40 cells also exhibited: (i) a reduction in gene targeting efficiencies, (ii) impaired sister chromatid exchange, and (iii) an accumulation of IR-induced chromosomal aberrations at the G2 phase, all of which indicate the involvement of H1R in the Rad54-mediated homologous recombination (HR) pathway. The mobility of H1R but not H1L in the nucleus decreased after MMS treatment and the repair of double-stranded breaks generated by I-SceI was unaffected in H1R(-/-) cells, suggesting that H1R integrates into HR-mediated repair pathways at the chromosome structure level. Together, these findings provide the first genetic evidence that a specific H1 variant plays a unique and important role in the DNA damage response in vertebrates.  相似文献   
995.
Fv-4 is a mouse gene that confers resistance against ecotropic murine leukemia virus (MLV) infection on mice. While receptor interference by the Fv-4 env gene product, Fv-4 Env, that can bind to the ecotropic MLV receptor has been shown to play an important role in the resistance, other mechanisms have also been suggested because it confers extremely efficient, complete resistance in vivo. Here, we have examined the effect of Fv-4 Env on infectious MLV production. Infectious MLV titers in supernatants obtained after transfection with a Friend MLV (FMLV) Env-expressing plasmid from MLV gag-pol producer cells harboring a retroviral vector were largely reduced by coexpression of Fv-4 Env. Syncytia formation mediated by R-peptide-deleted FMLV Env in NIH 3T3 cells was impaired by Fv-4 Env coexpression. Similarly, Fv-4 Env inhibited infectious amphotropic MLV production and syncytia formation mediated by R-peptide-deleted amphotropic MLV Env. Immunoprecipitation analysis revealed interaction of Fv-4 Env with amphotropic MLV Env as well as FMLV Env. These results indicate that Fv-4 Env inhibits infectious ecotropic and amphotropic MLV production by exerting dominant negative effect on MLV Env, suggesting contribution of this inhibitory effect to the resistance against ecotropic MLV infection in Fv-4-expressing mice.  相似文献   
996.
Recently, autoantibodies to some citrullinated autoantigens have been reported to be specific for rheumatoid arthritis (RA). However, an entire profile of and autoimmunity of the citrullinated proteins have been poorly understood. To understand the profile, we examined citrullinated autoantigens by a proteomic approach and further investigated the significance of citrullination in antigenicity of one of the autoantigens. Specifically, we detected citrullinated autoantigens in synovial tissue of a patient with RA by two-dimensional electrophoresis and Western blotting by using pooled sera from five patients with RA and anti-citrulline antibodies. After identifying the detected autoantigens by mass spectrometry, we investigated the contribution of citrullination to autoantigenicity by using a recombinant protein with or without citrullination on one of the identified novel citrullinated autoantigens. As a result, we found 51 citrullinated protein spots. Thirty (58.8%) of these spots were autoantigenic. We identified 13 out of the 30 detected citrullinated autoantigenic proteins. They contained three fibrinogen derivatives and several novel citrullinated autoantigens (for example, asporin and F-actin capping protein α-1 subunit [CapZα-1]). We further analyzed the contribution of citrullination to autoantigenicity in one of the detected citrullinated autoantigens, CapZα-1. As a result, frequencies of autoantibodies to non-citrullinated CapZα-1 were 36.7% in the RA group tested, 10.7% in the osteoarthritis (OA) group, and 6.5% in healthy donors. On the other hand, those to citrullinated CapZα-1 were 53.3% in the RA group, 7.1% in the OA group, and 6.5% in the healthy donors. This shows that autoantigenicity of citrullinated or non-citrullinated CapZα-1 is relevant to RA. The antibody titers to the citrullinated CapZα-1 were significantly higher than those to the non-citrullinated CapZα-1 in 36.7% of patients; however, the other patients showed almost equal antibody titers to both citrullinated and non-citrullinated CapZα-1. Therefore, the autoantibodies would target citrulline-related and/or citrulline-unrelated epitope(s) of CapZα-1. In conclusion, we report a profile of citrullinated autoantigens for the first time. Even though citrullination is closely related to autoantigenicity, citrullination would not always produce autoantigenicity in RA. Citrullinated and non-citrullinated autoantigens/autoepitopes would have different pathological roles in RA.  相似文献   
997.
In eukaryotes, ARGONAUTE proteins (AGOs) associate with microRNAs (miRNAs), short interfering RNAs (siRNAs), and other classes of small RNAs to regulate target RNA or target loci. Viral infection in plants induces a potent and highly specific antiviral RNA silencing response characterized by the formation of virus-derived siRNAs. Arabidopsis thaliana has ten AGO genes of which AGO1, AGO2, and AGO7 have been shown to play roles in antiviral defense. A genetic analysis was used to identify and characterize the roles of AGO proteins in antiviral defense against Turnip mosaic virus (TuMV) in Arabidopsis. AGO1, AGO2 and AGO10 promoted anti-TuMV defense in a modular way in various organs, with AGO2 providing a prominent antiviral role in leaves. AGO5, AGO7 and AGO10 had minor effects in leaves. AGO1 and AGO10 had overlapping antiviral functions in inflorescence tissues after systemic movement of the virus, although the roles of AGO1 and AGO10 accounted for only a minor amount of the overall antiviral activity. By combining AGO protein immunoprecipitation with high-throughput sequencing of associated small RNAs, AGO2, AGO10, and to a lesser extent AGO1 were shown to associate with siRNAs derived from silencing suppressor (HC-Pro)-deficient TuMV-AS9, but not with siRNAs derived from wild-type TuMV. Co-immunoprecipitation and small RNA sequencing revealed that viral siRNAs broadly associated with wild-type HC-Pro during TuMV infection. These results support the hypothesis that suppression of antiviral silencing during TuMV infection, at least in part, occurs through sequestration of virus-derived siRNAs away from antiviral AGO proteins by HC-Pro. These findings indicate that distinct AGO proteins function as antiviral modules, and provide a molecular explanation for the silencing suppressor activity of HC-Pro.  相似文献   
998.
Poaceae plants release phytosiderophores into the rhizosphere in order to chelate iron (Fe), which often exists in insoluble forms especially under high pH conditions. The impact of phytosiderophore treatment at the physiological and molecular levels in vivo remains largely elusive, although the biosynthesis of phytosiderophores and the transport of phytosiderophore-metal complexes have been well studied. We recently showed that the application of 30 μM of the chemically synthesized phytosiderophore 2′-deoxymugineic acid (DMA) was sufficient for apparent full recovery of otherwise considerably reduced growth of hydroponic rice seedlings at high pH. Moreover, unexpected induction of high-affinity nitrate transporter gene expression as well as nitrate reductase activity indicates that the nitrate response is linked to Fe homeostasis. These data shed light on the biological relevance of DMA not simply as a Fe chelator, but also as a trigger that promotes plant growth by reinforcing nitrate assimilation.  相似文献   
999.
Canine distemper virus (CDV) uses signaling lymphocyte activation molecule (SLAM), expressed on immune cells, as a receptor. However, epithelial and neural cells are also affected by CDV in vivo. Wild-type CDV strains showed efficient replication with syncytia in Vero cells expressing dog nectin4, and the infection was blocked by an anti-nectin4 antibody. In dogs with distemper, CDV antigen was preferentially detected in nectin4-positive neurons and epithelial cells, suggesting that nectin4 is an epithelial cell receptor for CDV and also involved in its neurovirulence.  相似文献   
1000.
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) repairs topoisomerase I cleavage complexes (Top1cc) by hydrolyzing their 3'-phosphotyrosyl DNA bonds and repairs bleomycin-induced DNA damage by hydrolyzing 3'-phosphoglycolates. Yeast Tdp1 has also been implicated in the repair of topoisomerase II-DNA cleavage complexes (Top2cc). To determine whether vertebrate Tdp1 is involved in the repair of various DNA end-blocking lesions, we generated Tdp1 knock-out cells in chicken DT40 cells (Tdp1-/-) and Tdp1-complemented DT40 cells with human TDP1. We found that Tdp1-/- cells were not only hypersensitive to camptothecin and bleomycin but also to etoposide, methyl methanesulfonate (MMS), H(2)O(2), and ionizing radiation. We also show they were deficient in mitochondrial Tdp1 activity. In biochemical assays, recombinant human TDP1 was found to process 5'-phosphotyrosyl DNA ends when they mimic the 5'-overhangs of Top2cc. Tdp1 also processes 3'-deoxyribose phosphates generated from hydrolysis of abasic sites, which is consistent with the hypersensitivity of Tdp1-/- cells to MMS and H(2)O(2). Because recent studies established that CtIP together with BRCA1 also repairs topoisomerase-mediated DNA damage, we generated dual Tdp1-CtIP-deficient DT40 cells. Our results show that Tdp1 and CtIP act in parallel pathways for the repair of Top1cc and MMS-induced lesions but are epistatic for Top2cc. Together, our findings reveal a broad involvement of Tdp1 in DNA repair and clarify the role of human TDP1 in the repair of Top2-induced DNA damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号