首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1185篇
  免费   86篇
  1271篇
  2023年   9篇
  2022年   19篇
  2021年   29篇
  2020年   9篇
  2019年   18篇
  2018年   22篇
  2017年   23篇
  2016年   25篇
  2015年   51篇
  2014年   38篇
  2013年   79篇
  2012年   103篇
  2011年   71篇
  2010年   49篇
  2009年   53篇
  2008年   87篇
  2007年   66篇
  2006年   58篇
  2005年   57篇
  2004年   53篇
  2003年   44篇
  2002年   36篇
  2001年   17篇
  2000年   9篇
  1999年   16篇
  1998年   10篇
  1997年   4篇
  1996年   11篇
  1995年   10篇
  1994年   5篇
  1993年   9篇
  1992年   8篇
  1991年   17篇
  1990年   10篇
  1989年   6篇
  1988年   5篇
  1987年   8篇
  1986年   7篇
  1985年   7篇
  1984年   12篇
  1983年   14篇
  1982年   9篇
  1981年   15篇
  1980年   8篇
  1979年   14篇
  1978年   8篇
  1976年   8篇
  1975年   5篇
  1972年   4篇
  1970年   3篇
排序方式: 共有1271条查询结果,搜索用时 0 毫秒
991.
We developed a clonal culture of Sargassum horneri to investigate the effect of photoperiod on reproduction in this species. Regenerated vegetative thalli were obtained using lateral branches excised from a thallus grown from a single embryo under short‐day conditions (SD = 10:14 h light : dark cycle). Lateral branches excised from the SD‐regenerated thallus became vegetative thalli that remained in that phase as long as they were cultured under SD. When an excised lateral branch was cultured under long‐day conditions (LD = 14:10 h light : dark cycle), it began to enter the reproductive phase while still less than 50 mm long. Induction of the reproductive phase was accompanied by a distinctive morphological change – suppression of blade formation at the apical region of the branch; elongation of branches without blades was then followed by differentiation of receptacles bearing conceptacles on their surface. Apices of receptacles were able to interconvert between reproductive and vegetative phases, as blades resprouted upon transfer from LD to SD. The critical day length for induction of receptacle formation was between 13 and 14 h; receptacle formation was also induced under SD conditions with night breaks (NBs). These results strongly suggest that reproductive regulation of S. horneri is a photoperiodic long‐day response. NBs with blue and green light were effective for reproductive induction but not with red light. This suggests that blue‐ and/or green‐light photoreceptors are involved in the photoperiodic reproductive response of S. horneri.  相似文献   
992.
To obtain more precise insight into the Mg2+-binding site essential for RNase HI catalytic activity, we have determined the crystal structure of E. coli RNase HI in complex with Mg2+. The analyzed cocrystal, which is not isomorphous with the Mg2+-free crystal previously refined at 1.48 Å resolution, was grown at a high MgSO4 concentration more than 100 mM so that even weakly bound Mg2+ sites could be identified. The structure was solved by the molecular replacement method, using the Mg2+-free crystal structure as a search model, and was refined to give a final R-value of 0.190 for intensity data from 10 to 2.8 Å, using the XPLOR and PROLSQ programs. The backbone structures are in their entirety very similar to each other between the Mg2+-bound and the metal-free crystals, except for minor regions in the enzyme interface with the DNA/RNA hybrid. The active center clearly revealed a single Mg2+ atom located at a position almost identical to that previously found by the soaking method. Although the two metal-ion mechanism had been suggested by another group (Yang, W., Hendrickson, W.A., Crouch, R.J., Satow, Y. Science 249:1398-1405, 1990) and partially supported by the crystallographic study of inactive HIV-1 RT RNase H fragment (Davies, J.F., II, Hostomska, Z., Hostomsky, Z., Jordan, S.R., Matthews, D. Science 252:88-95, 1991), the present result excludes the possibility that RNase HI requires two metal-binding sites for activity. In contrast to the features in the metal-free enzyme, the side chains of Asn-44 and Glu-48 are found to form coordinate bonds with Mg2+ in the metal-bound crystal. © 1993 Wiley-Liss, Inc.  相似文献   
993.
Red blood cells (RBC) of the bullfrog ( Rana catesbeiana ) contain larval-type hemoglobin (Hb) during the larval period. At the beginning of metamorphosis, RBC containing adult-type Hb appear and two types of RBC coexist in the systemic circulation. During the metamorphic climax, RBC with larval-type Hb disappear from the circulation and, simultaneously, RBC containing adult-type Hb begin to circulate. These two types of RBC were separated by Percoll density gradient centrifugation to examine the molecular size of the genomic DNA of each population. DNA fragmentation was detected only in new RBC with adult-type Hb that appeared in the systemic circulation and remained throughout post-metamorphic life. Semiquantification of DNA on agarose gel showed that the degree of DNA fragmentation was highest at the metamorphic climax. As the existence of DNA fragments suggested endonucleolytic cleavage, nuclease activity was examined by an activity gel system and in vitro circular plasmid DNA digestion assays. The latter revealed that both types of RBC possess endonucleolytic activity throughout the pre- and post-metamorphic periods. Assays of endogenous endonucleolytic activities under different divalent ionic conditions suggested that mobilization of intracellular Ca2+-Mg2+ induces genomic DNA fragmentation in adult-type RBC.  相似文献   
994.
Posttranslational modifications offer a dynamic way to regulate protein activity, subcellular localization, and stability. Here we estimate the effect of phosphorylation on protein binding and function for different types of complexes from human proteome. We find that phosphorylation sites tend to be located on binding interfaces in heterooligomeric and weak transient homooligomeric complexes. Analysis of molecular mechanisms of phosphorylation shows that phosphorylation may modulate the strength of interactions directly on interfaces and that binding hotspots tend to be phosphorylated in heterooligomers. Although the majority of complexes do not show significant estimated stability differences upon phosphorylation or dephosphorylation, for about one-third of all complexes it causes relatively large changes in binding energy. We discuss the cases where phosphorylation mediates the complex formation and regulates the function. We show that phosphorylation sites are more likely to be evolutionary conserved than other interfacial residues.  相似文献   
995.
We characterized high malic acid-producing strains of Saccharomyces cerevisiae isolated from sake mash. We compared the gene expression of these strains with those of the parental strain by DNA microarray, and found that stress response genes, such as HSP12, were commonly upregulated in the high malate-producing strains, whereas thiamine synthesis genes, such as THI4 and SNZ2, were downregulated in these strains.  相似文献   
996.
997.
PPARα is well known as a master regulator of lipid metabolism. PPARα activation enhances fatty acid oxidation and decreases the levels of circulating and cellular lipids in obese diabetic patients. Although PPARα target genes are widely known, little is known about the alteration of plasma and liver metabolites during PPARα activation. Here, we report that metabolome analysis-implicated upregulation of many plasma lysoGP species during bezafibrate (PPARα agonist) treatment. In particular, 1-palmitoyl lysophosphatidylcholine [LPC(16:0)] is increased by bezaf­ibrate treatment in both plasma and liver. In mouse primary hepatocytes, the secretion of LPC(16:0) increased on PPARα activation, and this effect was attenuated by PPARα antagonist treatment. We demonstrated that Pla2g7 gene expression levels in the murine hepatocytes were increased by PPARα activation, and the secretion of LPC(16:0) was suppressed by Pla2g7 siRNA treatment. Interestingly, LPC(16:0) activates PPARα and induces the expression of PPARα target genes in hepatocytes. Furthermore, we showed that LPC(16:0) has the ability to recover glucose uptake in adipocytes induced insulin resistance. These results reveal that LPC(16:0) is induced by PPARα activation in hepatocytes; LPC(16:0) contributes to the upregulation of PPARα target genes in hepatocytes and the recovery of glucose uptake in insulin-resistant adipocytes.  相似文献   
998.
In vertebrates, unfertilized eggs are arrested at metaphase of meiosis II by Mos and Emi2, an inhibitor of the APC/C ubiquitin ligase. In Xenopus, Cdk1 phosphorylates Emi2 and both destabilizes and inactivates it, whereas Mos recruits PP2A phosphatase to antagonize the Cdk1 phosphorylation. However, how Cdk1 phosphorylation inhibits Emi2 is largely unknown. Here we show that multiple N-terminal Cdk1 phosphorylation motifs bind cyclin B1-Cdk1 itself, Plk1, and CK1δ/ε to inhibit Emi2. Plk1, after rebinding to other sites by self-priming phosphorylation, partially destabilizes Emi2. Cdk1 and CK1δ/ε sequentially phosphorylate the C-terminal APC/C-docking site, thereby cooperatively inhibiting Emi2 from binding the APC/C. In the presence of Mos, however, PP2A-B56β/ε bind to Emi2 and keep dephosphorylating it, particularly at the APC/C-docking site. Thus, Emi2 stability and activity are dynamically regulated by Emi2-bound multiple kinases and PP2A phosphatase. Our data also suggest a general role for Cdk1 substrate phosphorylation motifs in M phase regulation.  相似文献   
999.
Angiogenesis and cancer invasiveness greatly contribute to cancer malignancy.Arf6 and its effector, AMAP1, are frequently overexpressed in breast cancer, and constitute a central pathway to induce the invasion and metastasis. In this pathway, Arf6 is activated by EGFR via GEP100. Arf6 is highly expressed also in human umbilical vein endothelial cells (HUVECs) and is implicated in angiogenesis. Here, we found that HUVECs also highly express AMAP1, and that vascular endothelial growth factor receptor-2 (VEGFR2) recruits GEP100 to activate Arf6. AMAP1 functions by binding to cortactin in cancer invasion and metastasis. We demonstrate that the same GEP100-Arf6-AMAP1-cortactin pathway is essential for angiogenesis activities, including cell migration and tubular formation, as well as for the enhancement of cell permeability and VE-cadherin endocytosis of VEGF-stimulated HUVECs. Components of this pathway are highly expressed in pathologic angiogenesis, and blocking of this pathway effectively inhibits VEGF- or tumor-induced angiogenesis and choroidal neovascularization. The GEP100-Arf6-AMAP1-cortactin pathway, activated by receptor tyrosine kinases, appears to be common in angiogenesis and cancer invasion and metastasis, and provides their new therapeutic targets.  相似文献   
1000.
Lectin-like oxidized low-density lipoprotein (OxLDL) receptor 1 (LOX-1) is the major OxLDL receptor of vascular endothelial cells and is involved in an early step of atherogenesis. LOX-1 exists as a disulfide-linked homodimer on the cell surface, which contains a pair of the ligand-binding domains (CTLD; C-type lectin-like domain). Recent research using living cells has suggested that the clustered state of LOX-1 dimer on the cell is functionally required. These results questioned how LOX-1 exists on the cell to achieve OxLDL binding. In this study, we revealed the functional significance of the clustered organization of the ligand-binding domain of LOX-1 with surface plasmon resonance. Biotinylated CTLD was immobilized on a streptavidin sensor chip to make CTLD clusters on the surface. In this state, the CTLD had high affinity for OxLDL with a dissociation constant (K(D)) in the nanomolar range. This value is comparable to the K(D) measured for LOX-1 on the cell. In contrast, a single homodimeric LOX-1 extracellular domain had lower affinity for OxLDL in the supra-micromolar range of K(D). Monomeric CTLD showed marginal binding to OxLDL. In combination with the analyses on the loss-of-binding mutant W150A, we concluded that the clustered organization of the properly formed homodimeric CTLD is essential for the strong binding of LOX-1 to OxLDL.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号