首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1697篇
  免费   90篇
  2023年   10篇
  2022年   18篇
  2021年   37篇
  2020年   12篇
  2019年   20篇
  2018年   31篇
  2017年   28篇
  2016年   36篇
  2015年   69篇
  2014年   50篇
  2013年   116篇
  2012年   125篇
  2011年   109篇
  2010年   71篇
  2009年   66篇
  2008年   122篇
  2007年   85篇
  2006年   74篇
  2005年   78篇
  2004年   68篇
  2003年   59篇
  2002年   45篇
  2001年   29篇
  2000年   37篇
  1999年   34篇
  1998年   15篇
  1997年   14篇
  1996年   14篇
  1995年   20篇
  1994年   8篇
  1993年   18篇
  1992年   20篇
  1991年   21篇
  1990年   23篇
  1989年   18篇
  1988年   25篇
  1987年   23篇
  1986年   15篇
  1985年   18篇
  1984年   9篇
  1983年   8篇
  1982年   10篇
  1981年   20篇
  1980年   5篇
  1979年   11篇
  1978年   12篇
  1977年   8篇
  1973年   5篇
  1972年   4篇
  1971年   3篇
排序方式: 共有1787条查询结果,搜索用时 15 毫秒
51.
Previously we demonstrated that inhibition of replication-associated protein (Rep) binding to its replication origin by artificial zinc-finger proteins (AZPs) is a powerful method to prevent plant virus infection in vivo. In the present study, we applied the AZP technology to Tomato yellow leaf curl virus (TYLCV), which is a limiting factor in tomato cultivation worldwide. First, we determined 5′-ATCGGTGT ATCGGTGT-3′ in the 195-bp intergenic region of the TYLCV-Israel strain, a strain reported first among TYLCV strains, as the Rep-binding site by gel shift assays. We then constructed a 6-finger AZP that bound to a 19-bp DNA including the Rep-binding site. We demonstrated that the binding affinity of the AZP was >1,000-fold greater than that of Rep and that the AZP inhibited Rep binding completely in vitro. Because the binding capability of the AZP was same as that of the AZP previously designed for geminivirus-resistant Arabidopsis thaliana, we predict that the present AZP will prevent TYLCV infection in vivo.  相似文献   
52.
53.
ATP-binding cassette protein A1 (ABCA1) plays a key role in generating high-density lipoprotein (HDL). However, the detailed mechanism of HDL formation remains unclear; in order to reveal it, chemicals that specifically block each step of HDL formation would be useful. Cyclosporine A inhibits ABCA1-mediated cholesterol efflux, but it is not clear whether this is mediated via inhibition of calcineurin. We analyzed the effects of cyclosporine A and related compounds on ABCA1 function in BHK/ABCA1 cells. Cyclosporine A, FK506, and pimecrolimus inhibited ABCA1-mediated cholesterol efflux in a concentration-dependent manner, with IC50 of 7.6, 13.6, and 7.0 μM, respectively. An mTOR inhibitor, rapamycin also inhibited ABCA1, with IC50 of 18.8 μM. The primary targets for these drugs were inhibited at much lower concentrations in BHK/ABCA1 cells, suggesting that they were not involved. Binding of [3H] cyclosporine A to purified ABCA1 could be clearly detected. Furthermore, a non-immunosuppressive cyclosporine, PSC833, inhibited ABCA1-mediated cholesterol efflux with IC50 of 1.9 μM, and efficiently competed with [3H] cyclosporine A binding to ABCA1. These results indicate that cyclosporine A and PSC833 inhibit ABCA1 via direct binding, and that the ABCA1 inhibitor PSC833 is an excellent candidate for further investigations of the detailed mechanisms underlying formation of HDL.  相似文献   
54.
There is much evidence that hypoxia in the tumor microenvironment enhances tumor progression. In an earlier study, we reported abnormal phenotypes of tumor-associated endothelial cells such as those resistant to chemotherapy and chromosomal instability. Here we investigated the role of hypoxia in the acquisition of chromosomal abnormalities in endothelial cells. Tumor-associated endothelial cells isolated from human tumor xenografts showed chromosomal abnormalities, >30% of which were aneuploidy. Aneuploidy of the tumor-associated endothelial cells was also shown by simultaneous in-situ hybridization for chromosome 17 and by immunohistochemistry with anti-CD31 antibody for endothelial staining. The aneuploid cells were surrounded by a pimonidazole-positive area, indicating hypoxia. Human microvascular endothelial cells expressed hypoxia-inducible factor 1 and vascular endothelial growth factor A in response to either hypoxia or hypoxia-reoxygenation, and in these conditions, they acquired aneuploidy in 7 days. Induction of aneuploidy was inhibited by either inhibition of vascular endothelial growth factor signaling with vascular endothelial growth factor receptor 2 inhibitor or by inhibition of reactive oxygen species by N-acetyl-L-cysteine. These results indicate that hypoxia induces chromosomal abnormalities in endothelial cells through the induction of reactive oxygen species and excess signaling of vascular endothelial growth factor in the tumor microenvironment.  相似文献   
55.
The computational complexity of the brain depends in part on a neuron’s capacity to integrate electrochemical information from vast numbers of synaptic inputs. The measurements of synaptic activity that are crucial for mechanistic understanding of brain function are also challenging, because they require intracellular recording methods to detect and resolve millivolt- scale synaptic potentials. Although glass electrodes are widely used for intracellular recordings, novel electrodes with superior mechanical and electrical properties are desirable, because they could extend intracellular recording methods to challenging environments, including long term recordings in freely behaving animals. Carbon nanotubes (CNTs) can theoretically deliver this advance, but the difficulty of assembling CNTs has limited their application to a coating layer or assembly on a planar substrate, resulting in electrodes that are more suitable for in vivo extracellular recording or extracellular recording from isolated cells. Here we show that a novel, yet remarkably simple, millimeter-long electrode with a sub-micron tip, fabricated from self-entangled pure CNTs can be used to obtain intracellular and extracellular recordings from vertebrate neurons in vitro and in vivo. This fabrication technology provides a new method for assembling intracellular electrodes from CNTs, affording a promising opportunity to harness nanotechnology for neuroscience applications.  相似文献   
56.
Spt6     
  相似文献   
57.
Human noroviruses (NoVs) are a major cause of non-bacterial gastroenteritis. Although histo-blood group antigens (HBGAs) have been implicated in the initial binding of NoV, the mechanism of that binding before internalization is not clear. To determine the involvement of NoVs and HBGAs in cell binding, we examined the localization of NoV virus-like particles (VLPs) and HBGAs in a human intestinal cell line and the human ileum biopsy specimens by immunofluorescence microscopy. The localizations of Ueno 7k VLPs (genogroup II.6) and each HBGA (type H1-, H2- and Leb-HBGAs) on the human intestinal cell line, Caco-2, were examined by confocal laser-scanning microscopy. To explore any interactions of NoVs and HBGAs in vivo, fresh biopsy specimens from human ileum were directly incubated with NoV VLPs and examined by immunofluorescence microscopy. We found that VLP binding depended on the state of cell differentiation, but not on the presence of HBGAs. In differentiated Caco-2 cells, we detected no type H1 HBGAs, but VLPs bound to the cells anyway. We incubated fresh biopsies of human ileum directly with VLPs, a model that better replicates the in vivo environment. VLPs mainly bound epithelial cells and goblet cells. Although the incubations were performed at 4°C to hinder internalization, VLPs were still detected inside cells. Our results suggest that VLPs utilize molecule(s) other than HBGAs during binding and internalization into cells.  相似文献   
58.
The activation process of secretory or membrane-bound zinc enzymes is thought to be a highly coordinated process involving zinc transport, trafficking, transfer and coordination. We have previously shown that secretory and membrane-bound zinc enzymes are activated in the early secretory pathway (ESP) via zinc-loading by the zinc transporter 5 (ZnT5)-ZnT6 hetero-complex and ZnT7 homo-complex (zinc transport complexes). However, how other proteins conducting zinc metabolism affect the activation of these enzymes remains unknown. Here, we investigated this issue by disruption and re-expression of genes known to be involved in cytoplasmic zinc metabolism, using a zinc enzyme, tissue non-specific alkaline phosphatase (TNAP), as a reporter. We found that TNAP activity was significantly reduced in cells deficient in ZnT1, Metallothionein (MT) and ZnT4 genes (ZnT1 −/− MT −/− ZnT4 −/− cells), in spite of increased cytosolic zinc levels. The reduced TNAP activity in ZnT1 −/− MT −/− ZnT4 −/− cells was not restored when cytosolic zinc levels were normalized to levels comparable with those of wild-type cells, but was reversely restored by extreme zinc supplementation via zinc-loading by the zinc transport complexes. Moreover, the reduced TNAP activity was adequately restored by re-expression of mammalian counterparts of ZnT1, MT and ZnT4, but not by zinc transport-incompetent mutants of ZnT1 and ZnT4. In ZnT1 −/− MT −/− ZnT4 −/− cells, the secretory pathway normally operates. These findings suggest that cooperative zinc handling of ZnT1, MT and ZnT4 in the cytoplasm is required for full activation of TNAP in the ESP, and present clear evidence that the activation process of zinc enzymes is elaborately controlled.  相似文献   
59.
An endangered tetraploid spined loach species, Cobitis takenoi (Cypriniformes: Cobitidae; hereafter called Tango loach) is known to inhabit only a single river in Kyoto Prefecture, Japan. Since Tango loach was discovered recently, in 2010, and only described in 2016, its morphology, ecology, and genetics are not well studied. Another tetraploid spined loach species Cobitis sp. BIWAE type A (hereafter, called Ohshima loach) inhabits the same river. The two loaches are reported as morphologically distinguishable from each other. Although the habitats of the two species in the river are segregated (Ohshima loach and Tango loach inhabit the upper and lower reaches, respectively), they overlap to a small degree in the boundary area. Recently, some individuals with morphological characteristics that are intermediate between the two species were found in the overlap zone. It was suspected that hybrids between the two species were produced since breeding seasons of the two species overlapped. To investigate whether the two species produce hybrids, we performed mitochondrial and nuclear DNA analyses on the unidentifiable individuals. Eight individuals unidentifiable to the species level collected in the river between 2017 and 2018 were examined and compared with the Tango and Ohshima loach species. Using mitochondrial DNA (mtDNA) cytochrome b analysis, we found that six individuals had mtDNA types identical to Tango loach and two individuals had mtDNA types identical to Ohshima loach. Furthermore, sequencing analysis of nuclear recombination activating gene 1 (RAG-1) revealed that each species had species-specific alleles. The phylogenetic analysis indicated that alleles in Tango loach were divided into two clusters and those from Ohshima loach formed a single cluster. There were no discrepancies in the combination between mtDNA and nuclear DNA species types within each specimen. DNA fingerprinting analysis (AFLP) showed that the species-unidentifiable individuals exhibited distinctly segregated genetic groups corresponding with Tango and Ohshima loaches. In summary, no hybrids were detected from among any unidentifiable individual examined in this study. New conventional genetic method for discriminating the two sympatric loach species developed here can be effective tool for the conservation of the Tango loach since there was no strict diagnostic morphological character between them.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号