首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   6篇
  2020年   5篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2015年   2篇
  2014年   2篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2005年   7篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有69条查询结果,搜索用时 31 毫秒
51.
52.
An all-solid-state green fluorescent protein (GFP) sensor for GFP measurement was developed. It is immune to interference from ambient light and works with standard flow-through cuvettes. The sensor is practically insensitive to the scattered excitation light encountered in microbial suspensions. It has a range of 0.0002-1 g/L (7.4 x 10(-9) - 3.7 x 10(-5) M) with limit of detection 0.00019 g/L (7.0 x 10(-9) M). The sensor could be used with a UV or blue light emitting diode (LED) as a light source, depending on required sensitivity, selectivity, and background levels. Its very low cost makes it useful in a variety of applications. This article describes the construction and validation of the sensor both off- and on-line in fermentation processes.  相似文献   
53.
Small-scale upstream bioprocess development often occurs in flasks and multi-well plates. These culturing platforms are often not equipped to accurately monitor and control critical process parameters; thus they may not yield conditions representative of manufacturing. In response, we and others have developed optical sensors that enable small-scale process monitoring. Here we have compared two parameters critical to control in industrial cell culture, pH and dissolved oxygen (DO), measured with our optical sensors versus industrially accepted electrochemical probes. For both optical sensors, agreement with the corresponding electrochemical probe was excellent. The Pearson Correlations between the optical sensors and electrochemical probes were 98.7% and 99.7%, for DO and pH, respectively. Also, we have compared optical pH sensor performance in regular (320 mOsm/kg) and high-osmolality (450 mOsm/kg) cell culture media to simulate the increase in osmolality in pH-controlled cultures. Over a pH range of 6.38-7.98 the average difference in pH readings in the two media was 0.04 pH units. In summary, we have demonstrated that these optical sensors agree well with standard electrochemical probes. The accuracy of the optical probes demonstrates their ability to detect potential parameter drift that could have significant impact on growth, production kinetics, and protein product quality. We have also shown that an increase in osmolality that could result from controlling pH or operating the reactor in fed-batch mode has an insignificant impact on the functionality of the pH patches.  相似文献   
54.
55.
IntroductionWe conducted a study to analyze how infection by hepatitis C virus (HCV) may influence the immunological serum pattern of patients with Sjögren syndrome (SS).MethodsSince 1994, we have tested serum HCV-IgG antibodies in 783 patients with SS diagnosed according to the 1993 European classification criteria. The immunological profile at diagnosis was compared according to the presence or absence of HCV.ResultsOf the 783 patients with SS, 105 (13.4 %) tested positive for HCV-IgG antibodies (88 females, 17 males, mean age at SS diagnosis: 62.9 years). Multivariate analysis showed that patients with SS-HCV had a higher mean age and a higher frequency of low C3/C4 levels, cryoglobulins, and hematological neoplasia compared with patients without HCV. The frequency of anti-La antibodies compared with anti-Ro antibodies was higher in patients with SS-HCV (17 % vs. 15 %) and lower in patients without HCV infection (30 % vs. 43 %). The frequency of concomitant detection of the three main cryoglobulin-related markers (cryoglobulins, rheumatoid factor activity, and C4 consumption) was threefold higher in patients with SS-HCV compared with patients without HCV. SS-HCV patients with genotype 1b showed the highest frequencies of immunological abnormalities related to cryoglobulins and the lowest frequencies of anti-Ro/La antibodies.ConclusionsWe found HCV infection in 13 % of a large series of Spanish patients with SS. The HCV-driven autoimmune response was characterized by a lower frequency of anti-Ro/La antibodies, an abnormal predominance of anti-La among anti-Ro antibodies, and a higher frequency of cryoglobulinemic-related immunological markers in comparison with patients without HCV infection. This immunological pattern may contribute to the poor outcomes found in patients with SS-HCV.  相似文献   
56.
Protein therapeutics, also known as biologics, are currently manufactured at centralized facilities according to rigorous protocols. The manufacturing process takes months and the delivery of the biological products needs a cold chain. This makes it less responsive to rapid changes in demand. Here, we report on technology application for on-demand biologics manufacturing (Bio-MOD) that can produce safe and effective biologics from cell-free systems at the point of care without the current challenges of long-term storage and cold-chain delivery. The objective of the current study is to establish proof-of-concept safety and efficacy of Bio-MOD-manufactured granulocyte colony-stimulating factor (G-CSF) in a mouse model of total body irradiation at a dose estimated to induce 30% lethality within the first 30 days postexposure. To illustrate on-demand Bio-MOD production feasibility, histidine-tagged G-CSF was manufactured daily under good manufacturing practice-like conditions prior to administration over a 16-day period. Bio-MOD-manufactured G-CSF improved 30-day survival when compared with saline alone (p = .073). In addition to accelerating recovery from neutropenia, the platelet and hemoglobin nadirs were significantly higher in G-CSF-treated animals compared with saline-treated animals (p < .05). The results of this study demonstrate the feasibility of consistently manufacturing safe and effective on-demand biologics suitable for real-time release.  相似文献   
57.
The medium needed to perform a fermentation process with viable cells of Lactobacillus casei ssp. rhamnosus NBIMCC 1013 for the production of lactic acid was modeled and optimized. On the basis of single‐factor experiments and statistical analysis, the significant factors affecting the fermentation process, i.e. the concentration of carbon source, concentrations of both yeast and meat extracts, and the range of variability of these components were determined. Modeling and optimization of the medium contents were performed using central composite design. The composition of the medium used for the production of lactic acid (g/L) was as follows: glucose 69.8, meat extract 17.07, yeast extract 10.9, CH3COONa 10, K2HPO4 0.25, KH2PO4 0.25, MgSO4·7H2O 0.05, and FeSO4 0.05. The maximum specific growth rate of the lactic acid bacteria (μ=0.51 h−1) and other kinetic parameters were determined during cultivation in a laboratory bioreactor using the logistic equation and the Luedeking–Piret model. The obtained medium allows the production of lactic acid under optimum conditions, at high specific sugar assimilation rates and high lactic acid accumulation rates. The positive results of the paper are the new nutrient medium for lactic acid production and the process kinetic model, enabling scaling up and switching to a continuous process.  相似文献   
58.
Glucosinolates and isothiocyanates have both been objects of research for more than half a century. Interest in these unique phytochemicals escalated following the discovery that sulforaphane, an isothiocyanate from broccoli, potently induces mammalian cytoprotective proteins through the Keap1-Nrf2-ARE pathway. In parallel with the advances in understanding the molecular regulation of this pathway and its critical role in protection against electrophiles and oxidants, there have been increased efforts toward translating this knowledge to improve human health and combat disease. This review focuses on the animal studies demonstrating the beneficial effects of glucosinolates and isothiocyanates in models of carcinogenesis, and cardiovascular and neurological diseases, as well as on the intervention studies of their safety, pharmacokinetics, and efficacy in humans.  相似文献   
59.
Shake flasks are ubiquitous in cell culture and fermentation. However, conventional devices for measuring oxygen concentrations are impractical in these systems. Thus, there is no definitive information on the oxygen supply of growing cells. Here we report the noninvasive, nonintrusive monitoring of dissolved oxygen (DO) in shake flasks using a low-cost optical sensor. The oxygen-sensitive element is a thin, luminescent patch affixed to the inside bottom of the flask. The sensitivity and accuracy of this device is maximal up to 60% DO, within the range that is critical to cell culture applications. By measuring actual oxygen levels every 1 or 5 min throughout the course of yeast and E. coli fermentations, we found that a modest increase in shaker speed and a decrease in culture volume slowed the onset of oxygen limitation and reduced its duration. This is the first time that in situ oxygen limitation is reported in shake flasks. The same data is unattainable with a Clark type electrode because the presence of the intrusive probe itself changes the actual conditions. Available fiber optic oxygen sensors require cumbersome external connections and recalibration when autoclaved.  相似文献   
60.
The development and application of a fluorescent excitation-ratiometric, noninvasive pH sensor for continuous on-line fermentation monitoring is presented. The ratiometric approach is robust and insensitive to factors such as source intensity, photobleaching, or orientation of the patch, and since measurements can be made with external instrumentation and without direct contact with the patch, detection is completely noninvasive. The fluorescent dye 8-hydroxy-1,3,6-pyrene trisulfonic acid was immobilized onto Dowex strongly basic anion-exchange resin, which was subsequently entrapped into a proton-permeable hydrogel layer. The sensor layer was polymerized directly onto a white microfiltration membrane backing that provided an optical barrier to the fluorescence and scatter of the fermentation medium. The ratio of emission intensity at 515 nm excited at 468 nm to that excited at 408 nm correlated well with the pH of clear buffers, over the pH range of 6-9. The sensor responded rapidly (<9 min) and reversibly to changes in the solution pH with high precision. The sterilizable HPTS sensor was used for on-line pH monitoring of an E. coli fermentation. The output from the indwelling sensor patch was always in good agreement with the pH recorded off-line with an ISFET probe, with a maximum discrepancy of 0.05 pH units. The sensor is easily adaptable to closed-loop feedback control systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号