首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   423篇
  免费   27篇
  450篇
  2023年   5篇
  2022年   7篇
  2021年   8篇
  2020年   8篇
  2019年   14篇
  2018年   11篇
  2017年   2篇
  2016年   14篇
  2015年   22篇
  2014年   23篇
  2013年   36篇
  2012年   32篇
  2011年   26篇
  2010年   25篇
  2009年   24篇
  2008年   25篇
  2007年   24篇
  2006年   23篇
  2005年   26篇
  2004年   21篇
  2003年   16篇
  2002年   25篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有450条查询结果,搜索用时 9 毫秒
11.
The importance of host-specialization to speciation processes in obligate host-associated bacteria is well known, as is also the ability of recombination to generate cohesion in bacterial populations. However, whether divergent strains of highly recombining intracellular bacteria, such as Wolbachia, can maintain their genetic distinctness when infecting the same host is not known. We first developed a protocol for the genome sequencing of uncultivable endosymbionts. Using this method, we have sequenced the complete genomes of the Wolbachia strains wHa and wNo, which occur as natural double infections in Drosophila simulans populations on the Seychelles and in New Caledonia. Taxonomically, wHa belong to supergroup A and wNo to supergroup B. A comparative genomics study including additional strains supported the supergroup classification scheme and revealed 24 and 33 group-specific genes, putatively involved in host-adaptation processes. Recombination frequencies were high for strains of the same supergroup despite different host-preference patterns, leading to genomic cohesion. The inferred recombination fragments for strains of different supergroups were of short sizes, and the genomes of the co-infecting Wolbachia strains wHa and wNo were not more similar to each other and did not share more genes than other A- and B-group strains that infect different hosts. We conclude that Wolbachia strains of supergroup A and B represent genetically distinct clades, and that strains of different supergroups can co-exist in the same arthropod host without converging into the same species. This suggests that the supergroups are irreversibly separated and that barriers other than host-specialization are able to maintain distinct clades in recombining endosymbiont populations. Acquiring a good knowledge of the barriers to genetic exchange in Wolbachia will advance our understanding of how endosymbiont communities are constructed from vertically and horizontally transmitted genes.  相似文献   
12.
Transthyretin related amyloidosis is a nosological entity that leads to disability, diminished quality of life, all stages of chronic kidney disease and eventually death. Podocytes are polarized, highly differentiated epithelial cells important for proper nephron function. In the present study we investigated whether deposited TTRVal30Met (TTRV30M) molecules could be localized within podocytes in situ under the effect of different housing conditions (i.e. specific pathogen free [SPF] vs. non-SPF). Murine renal glomeruli from human TTRV30M (hTTRV30M) transgenic mice were examined via direct and indirect immunofluorescence techniques for the presence of hTTRV30M, murine serum amyloid P, activated caspase-3 and NPHS1. Association strength and amount of colocalization for NPHS1?ChTTRV30M, NPHS1-activated caspase-3, hTTRV30M-murine serum amyloid P were estimated. Localization of hTTRV30M in podocytes was demonstrated by immuno-electron microscopy. Renal hTTRV30M gene and NPHS1 gene expression levels were estimated. Non-SPF transgenic mice showed increased glomerular hTTRV30M deposition compared to their SPF counterparts. Furthermore increased podocytic localization of hTTRV30M was noticed in non-SPF mice. Glomerular caspase-3 activation was increased only in the non SPF housing conditions. Podocytic caspase-3 activation was increased in SPF and in non-SPF transgenic mice when compared to non transgenic controls. Environmental conditions influence glomerular deposition and podocytic localization of hTTRV30M. In this context increased caspase-3 activation occurred.  相似文献   
13.
Ankyrin repeat domain-encoding genes are common in the eukaryotic and viral domains of life, but they are rare in bacteria, the exception being a few obligate or facultative intracellular Proteobacteria species. Despite having a reduced genome, the arthropod strains of the alphaproteobacterium Wolbachia contain an unusually high number of ankyrin repeat domain-encoding genes ranging from 23 in wMel to 60 in wPip strain. This group of genes has attracted considerable attention for their astonishing large number as well as for the fact that ankyrin proteins are known to participate in protein-protein interactions, suggesting that they play a critical role in the molecular mechanism that determines host-Wolbachia symbiotic interactions. We present a comparative evolutionary analysis of the wMel-related ankyrin repeat domain-encoding genes present in different Drosophila-Wolbachia associations. Our results show that the ankyrin repeat domain-encoding genes change in size by expansion and contraction mediated by short directly repeated sequences. We provide examples of intra-genic recombination events and show that these genes are likely to be horizontally transferred between strains with the aid of bacteriophages. These results confirm previous findings that the Wolbachia genomes are evolutionary mosaics and illustrate the potential that these bacteria have to generate diversity in proteins potentially involved in the symbiotic interactions.  相似文献   
14.
15.
Background

The interaction between gut bacterial symbionts and Tephritidae became the focus of several studies that showed that bacteria contributed to the nutritional status and the reproductive potential of its fruit fly hosts. Anastrepha fraterculus is an economically important fruit pest in South America. This pest is currently controlled by insecticides, which prompt the development of environmentally friendly methods such as the sterile insect technique (SIT). For SIT to be effective, a deep understanding of the biology and sexual behavior of the target species is needed. Although many studies have contributed in this direction, little is known about the composition and role of A. fraterculus symbiotic bacteria. In this study we tested the hypothesis that gut bacteria contribute to nutritional status and reproductive success of A. fraterculus males.

Results

AB affected the bacterial community of the digestive tract of A. fraterculus, in particular bacteria belonging to the Enterobacteriaceae family, which was the dominant bacterial group in the control flies (i.e., non-treated with AB). AB negatively affected parameters directly related to the mating success of laboratory males and their nutritional status. AB also affected males’ survival under starvation conditions. The effect of AB on the behaviour and nutritional status of the males depended on two additional factors: the origin of the males and the presence of a proteinaceous source in the diet.

Conclusions

Our results suggest that A. fraterculus males gut contain symbiotic organisms that are able to exert a positive contribution on A. fraterculus males’ fitness, although the physiological mechanisms still need further studies.

  相似文献   
16.
Background

Symbiotic bacteria contribute to a multitude of important biological functions such as nutrition and reproduction and affect multiple physiological factors like fitness and longevity in their insect hosts. The melon fly, Zeugodacus cucurbitae (Coquillett), is an important agricultural pest that affects a variety of cultivated plants belonging mostly to the Cucurbitaceae family. It is considered invasive and widespread in many parts of the world. Several approaches are currently being considered for the management of its populations including the environmentally friendly and effective sterile insect technique (SIT), as a component of an integrated pest management (IPM) strategy. In the present study, we examined the effect of diet and radiation on the bacterial symbiome of Z. cucurbitae flies with the use of Next Generation Sequencing technologies.

Results

Melon flies were reared on two diets at the larval stage, an artificial bran-based diet and on sweet gourd, which affected significantly the development of the bacterial profiles. Significant differentiation was also observed based on gender. The effect of radiation was mostly diet dependent, with irradiated melon flies reared on the bran diet exhibiting a significant reduction in species diversity and richness compared to their non-irradiated controls. Changes in the bacterial symbiome of the irradiated melon flies included a drastic reduction in the number of sequences affiliated with members of Citrobacter, Raoultella, and Enterobacteriaceae. At the same time, an increase was observed for members of Enterobacter, Providencia and Morganella. Interestingly, the irradiated male melon flies reared on sweet gourd showed a clear differentiation compared to their non-irradiated controls, namely a significant reduction in species richness and minor differences in the relative abundance for members of Enterobacter and Providencia.

Conclusions

The two diets in conjunction with the irradiation affected significantly the formation of the bacterial symbiome. Melon flies reared on the bran-based artificial diet displayed significant changes in the bacterial symbiome upon irradiation, in all aspects, including species richness, diversity and composition. When reared on sweet gourd, significant changes occurred to male samples due to radiation, only in terms of species richness.

  相似文献   
17.
Methodology to rapidly express milligram quantities of recombinant proteins through the Lipofectin-mediated transfection of insect cells in small-scale, protein-free suspension culture is presented. The transfection phase in suspension culture was first optimized using the green fluorescence protein coupled with FACs analysis to examine the effect of variables such as the transfection media, duration, and cell density on transfection efficiency and expression level. The recombinant protein production phase was optimized using secreted alkaline phosphatase (SEAP) as a reporter protein to evaluate the cell seeding density and harvest time. Using this method, 5 secreted, 2 intracellular, and 1 chimeric protein were expressed at levels ranging from 6 to 50 mg/L. Furthermore, the ability to purify over 2 mg of His(6)-tagged SEAP by immobilized metal affinity chromatography from 50 mL insect cell culture medium to greater than 95% purity was also demonstrated. This method is suitable for scale-up and high-throughput applications.  相似文献   
18.
Impact of DNA ligase IV on the fidelity of end joining in human cells   总被引:9,自引:5,他引:4  
A DNA ligase IV (LIG4)-null human pre-B cell line and human cell lines with hypomorphic mutations in LIG4 are significantly impaired in the frequency and fidelity of end joining using an in vivo plasmid assay. Analysis of the null line demonstrates the existence of an error-prone DNA ligase IV-independent rejoining mechanism in mammalian cells. Analysis of lines with hypomorphic mutations demonstrates that residual DNA ligase IV activity, which is sufficient to promote efficient end joining, nevertheless can result in decreased fidelity of rejoining. Thus, DNA ligase IV is an important factor influencing the fidelity of end joining in vivo. The LIG4-defective cell lines also showed impaired end joining in an in vitro assay using cell-free extracts. Elevated degradation of the terminal nucleotide was observed in a LIG4-defective line, and addition of the DNA ligase IV–XRCC4 complex restored end protection. End protection by DNA ligase IV was not dependent upon ligation. Finally, using purified proteins, we demonstrate that DNA ligase IV–XRCC4 is able to protect DNA ends from degradation by T7 exonuclease. Thus, the ability of DNA ligase IV–XRCC4 to protect DNA ends may contribute to the ability of DNA ligase IV to promote accurate rejoining in vivo.  相似文献   
19.
Maternally transmitted bacteria of the genus Wolbachia are obligate, intracellular symbionts that are frequently found in insects and cause a diverse array of reproductive manipulations, including cytoplasmic incompatibility, male killing, parthenogenesis, and feminization. Despite the existence of a broad range of scientific interest, many aspects of Wolbachia research have been limited to laboratories with insect-rearing facilities. The inability to culture these bacteria outside of the invertebrate host has also led to the existing bias of Wolbachia research toward infections that occur in host insects that are easily reared. Here, we demonstrate that Wolbachia infections can be simply established, stably maintained, and cryogenically stored in vitro using standard tissue culture techniques. We have examined Wolbachia host range by introducing different Wolbachia types into a single tissue culture. The results show that an Aedes albopictus (Diptera: Culicidae) cell line can support five different Wolbachia infection types derived from Drosophila simulans (Diptera: Drosophilidae), Culex pipiens (Culicidae), and Cadra cautella (Lepidoptera: Phycitidae). These bacterial types include infection types that have been assigned to two of the major Wolbachia clades. As an additional examination of Wolbachia host cell range, we demonstrated that a Wolbachia strain from D. simulans could be established in host insect cell lines derived from A. albopictus, Spodoptera frugiperda (Lepidoptera: Noctuidae), and Drosophila melanogaster. These results will facilitate the development of a Wolbachia stock center, permitting novel approaches for the study of Wolbachia infections and encouraging Wolbachia research in additional laboratories.  相似文献   
20.
Kendirgi F  Swevers L  Iatrou K 《FEBS letters》2002,524(1-3):59-68
We have cloned and functionally characterized a novel protein, BmVMP30, which is synthesized by the cells of the follicular epithelium of the ovarian follicles of the domesticated silkworm Bombyx mori, secreted from them and associated with the vitelline membrane. BmVMP30 is a 30 kDa protein that bears limited structural features reminiscent of other insect vitelline membrane proteins. Although BmVMP30 does not share pronounced similarities or signature motifs with other reported proteins, its temporal and spatial expression and its behavior throughout oogenesis suggest that it is a novel member of the insect vitelline membrane protein family. The protein is expressed exclusively in the cells of the follicular epithelium during stages -15 to -1 of vitellogenesis, secreted from them and, ultimately, localized at the junction between the oocyte and the eggshell, where the vitelline membrane is located. Treatment of follicles with an antisense oligonucleotide that encompasses the translation initiation codon results in the production of an N-terminally truncated protein and disruption of the integrity of the follicular epithelium. Antisense oligonucleotide treatment, however, has no effect on the implementation of the developmental program that directs the autonomous progression of ovarian follicles through the last stages of vitellogenesis and choriogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号