首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   845篇
  免费   50篇
  2023年   4篇
  2022年   5篇
  2021年   13篇
  2020年   14篇
  2019年   14篇
  2018年   12篇
  2017年   18篇
  2016年   27篇
  2015年   28篇
  2014年   37篇
  2013年   45篇
  2012年   65篇
  2011年   55篇
  2010年   47篇
  2009年   29篇
  2008年   55篇
  2007年   44篇
  2006年   44篇
  2005年   50篇
  2004年   47篇
  2003年   38篇
  2002年   36篇
  2001年   13篇
  2000年   13篇
  1999年   18篇
  1998年   15篇
  1997年   12篇
  1996年   15篇
  1995年   10篇
  1994年   7篇
  1993年   7篇
  1992年   4篇
  1991年   8篇
  1990年   5篇
  1989年   6篇
  1988年   4篇
  1987年   3篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1966年   1篇
  1964年   1篇
排序方式: 共有895条查询结果,搜索用时 0 毫秒
891.
Protected areas are crucial for Amazonian nature conservation. Many Amazonian reserves have been selected systematically to achieve biodiversity representativeness. We review the role natural-scientific understanding has played in reserve selection, and evaluate the theoretical potential of the existing reserves to cover a complete sample of the species diversity of the Amazonian rainforest biome. In total, 108 reserves (604,832 km2) are treated as strictly protected and Amazonian; 87 of these can be seen as systematically selected to sample species diversity (75.3% of total area). Because direct knowledge on all species distributions is unavailable, surrogates have been used to select reserves: direct information on some species distributions (15 reserves, 14.8% of total area); species distribution patterns predicted on the basis of conceptual models, mainly the Pleistocene refuge hypothesis, (5/10.3%); environmental units (46/27.3%); or a combination of distribution patterns and environmental units (21/22.9%). None of these surrogates are reliable: direct information on species distributions is inadequate; the Pleistocene refuge hypothesis is highly controversial; and environmental classifications do not capture all relevant ecological variation, and their relevance for species distribution patterns is undocumented. Hence, Amazonian reserves cannot be safely assumed to capture all Amazonian species. To improve the situation, transparency and an active dialogue with the scientific community should be integral to conservation planning. We suggest that the best currently available approach for sampling Amazonian species diversity in reserve selection is to simultaneously inventory indicator plant species and climatic and geological conditions, and to combine field studies with remote sensing.  相似文献   
892.
Vector‐borne parasites often manipulate hosts to attract uninfected vectors. For example, parasites causing malaria alter host odor to attract mosquitoes. Here, we discuss the ecology and evolution of fruit‐colonizing yeast in a tripartite symbiosis—the so‐called “killer yeast” system. “Killer yeast” consists of Saccharomyces cerevisiae yeast hosting two double‐stranded RNA viruses (M satellite dsRNAs, L‐A dsRNA helper virus). When both dsRNA viruses occur in a yeast cell, the yeast converts to lethal toxin‑producing “killer yeast” phenotype that kills uninfected yeasts. Yeasts on ephemeral fruits attract insect vectors to colonize new habitats. As the viruses have no extracellular stage, they depend on the same insect vectors as yeast for their dispersal. Viruses also benefit from yeast dispersal as this promotes yeast to reproduce sexually, which is how viruses can transmit to uninfected yeast strains. We tested whether insect vectors are more attracted to killer yeasts than to non‑killer yeasts. In our field experiment, we found that killer yeasts were more attractive to Drosophila than non‐killer yeasts. This suggests that vectors foraging on yeast are more likely to transmit yeast with a killer phenotype, allowing the viruses to colonize those uninfected yeast strains that engage in sexual reproduction with the killer yeast. Beyond insights into the basic ecology of the killer yeast system, our results suggest that viruses could increase transmission success by manipulating the insect vectors of their host.  相似文献   
893.
Seppälä  Jukka  Balode  Maija 《Hydrobiologia》1997,363(1-3):207-217
In vivo fluorescence methods are efficient toolsfor studying the seasonal and spatial dynamics ofphytoplankton. Traditionally the measurements are madeusing single excitation-emission wavelengthcombination. During a cruise in the Gulf of Riga(Baltic Sea) we supplemented this technique bymeasuring the spectral fluorescence signal (SFS) andfixed wavelength fluorescence intensities at theexcitation maxima of main accessory pigments. Thesemethods allowed the rapid collection of quantitativefluorescence data and chemotaxonomic diagnostics ofthe phytoplankton community. The chlorophylla-specific fluorescence intensities (R) and thespectral fluorescence fingerprints were analysedtogether with concentrations of chlorophyll a indifferent algal size-groups, phytoplankton biomass andtaxonomic position. The lower level of R in thesouthern gulf was related to the higher proportion ofcyanobacteria relative to total biomass and the lowerabundance of small algae. The phycoerythrinfluorescence signal was obviously due to the largecyanobacteria. The basin-wide shift in the shape ofchlorophyll a excitation spectra was caused bythe variable proportions of differently pigmentedcyanobacteria, diatoms and cryptomonads. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
894.
895.
Parasitism is a potential mechanism initiating or facilitating ecotypic differentiation and speciation in freshwater fish. While recent studies have begun to explore this question, there are no empirical studies of parasitism in evolutionary replicates of ecotype‐pairs at variable stages of speciation. Such comparative studies of parasitism along continuums of host differentiation are needed as a first step towards testing the role of parasites in ecological speciation. We explored parasitism of whitefish Coregonus lavaretus in four pre‐alpine lakes in Switzerland that hold replicate species radiations of whitefish. We sampled shallow and deep‐spawning ecotypes on their breeding grounds. We found significant and consistent differences in infection between the ecotypes so that the shallow‐spawning fish had more trematode infections, whereas the deepspawning fish had more cestodes. The magnitude of these differences correlated positively with the degree of the genetic differentiation among the ecotypes and negatively with the extent of eutrophication of the lakes. Although the overall diversity of infections was low, some parasite species with potential effects on fish showed marked differences in infection between the ecotypes, suggesting that parasitism may have a role in maintaining ecotype differentiation in this system. Our results also indicate previously unknown habitat segregation of the better differentiated ecotypes, i.e. species, along the depth gradient outside the breeding season. Moreover, oligotrophic lakes tended to have higher parasite species richness and higher abundances of infection, than mesotrophic and eutrophic lakes, suggesting that the history of eutrophication affects parasite diversity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号