首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1102篇
  免费   84篇
  2022年   7篇
  2021年   16篇
  2020年   7篇
  2019年   6篇
  2018年   8篇
  2017年   14篇
  2016年   19篇
  2015年   33篇
  2014年   28篇
  2013年   96篇
  2012年   61篇
  2011年   43篇
  2010年   37篇
  2009年   35篇
  2008年   39篇
  2007年   50篇
  2006年   47篇
  2005年   52篇
  2004年   41篇
  2003年   44篇
  2002年   51篇
  2001年   46篇
  2000年   47篇
  1999年   31篇
  1998年   17篇
  1997年   11篇
  1996年   7篇
  1994年   8篇
  1993年   13篇
  1992年   28篇
  1991年   30篇
  1990年   21篇
  1989年   28篇
  1988年   16篇
  1987年   21篇
  1986年   10篇
  1985年   9篇
  1984年   5篇
  1983年   6篇
  1982年   5篇
  1980年   5篇
  1979年   15篇
  1978年   12篇
  1977年   8篇
  1976年   5篇
  1974年   4篇
  1973年   8篇
  1972年   7篇
  1971年   5篇
  1970年   4篇
排序方式: 共有1186条查询结果,搜索用时 140 毫秒
941.
942.

Background

Peptide nucleic acid fluorescent in situ hybridization (PNA-FISH) is a rapid and established method for identification of Candida sp., Gram positive, and Gram negative bacteria from positive blood cultures. This study reports clinical experience in the evaluation of 103 positive blood cultures and 17 positive peritoneal fluid cultures from 120 patients using PNA-FISH. Our study provides evidence as to potential pharmaceutical cost savings based on rapid pathogen identification, in addition to the novel application of PNA-FISH to peritoneal fluid specimens.

Methods

Identification accuracy and elapsed time to identification of Gram positives, Gram negatives, and Candida sp., isolated from blood and peritoneal fluid cultures were assessed using PNA-FISH (AdvanDx), as compared to standard culture methods. Patient charts were reviewed to extrapolate potential pharmaceutical cost savings due to adjustment of antimicrobial or antifungal therapy, based on identification by PNA-FISH.

Results

In blood cultures, time to identification by standard culture methods for bacteria and Candida sp., averaged 83.6 hours (95% CI 56.7 to 110.5). Identification by PNA-FISH averaged 11.2 hours (95% CI 4.8 to 17.6). Overall PNA-FISH identification accuracy was 98.8% (83/84, 95% CI 93.5% to 99.9%) as compared to culture. In peritoneal fluid, identification of bacteria by culture averaged 87.4 hours (95% CI ?92.4 to 267.1). Identification by PNA-FISH averaged 16.4 hours (95% CI ?57.3 to 90.0). Overall PNA-FISH identification accuracy was 100% (13/13, 95% CI 75.3% to 100%). For Candida sp., pharmaceutical cost savings based on PNA-FISH identification could be $377.74/day. For coagulase-negative staphylococcus (CoNS), discontinuation of vancomycin could result in savings of $20.00/day.

Conclusions

In this retrospective study, excellent accuracy of PNA-FISH in blood and peritoneal fluids with reduced time to identification was observed, as compared to conventional culture-based techniques. Species-level identification based on PNA-FISH could contribute to notable cost savings due to adjustments in empiric antimicrobial or antifungal therapy as appropriate to the pathogen identified.  相似文献   
943.
The ionization of internal groups in proteins can trigger conformational change. Despite this being the structural basis of most biological energy transduction, these processes are poorly understood. Small angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) spectroscopy experiments at ambient and high hydrostatic pressure were used to examine how the presence and ionization of Lys-66, buried in the hydrophobic core of a stabilized variant of staphylococcal nuclease, affect conformation and dynamics. NMR spectroscopy at atmospheric pressure showed previously that the neutral Lys-66 affects slow conformational fluctuations globally, whereas the effects of the charged form are localized to the region immediately surrounding position 66. Ab initio models from SAXS data suggest that when Lys-66 is charged the protein expands, which is consistent with results from NMR spectroscopy. The application of moderate pressure (<2 kbar) at pH values where Lys-66 is normally neutral at ambient pressure left most of the structure unperturbed but produced significant nonlinear changes in chemical shifts in the helix where Lys-66 is located. Above 2 kbar pressure at these pH values the protein with Lys-66 unfolded cooperatively adopting a relatively compact, albeit random structure according to Kratky analysis of the SAXS data. In contrast, at low pH and high pressure the unfolded state of the variant with Lys-66 is more expanded than that of the reference protein. The combined global and local view of the structural reorganization triggered by ionization of the internal Lys-66 reveals more detectable changes than were previously suggested by NMR spectroscopy at ambient pressure.  相似文献   
944.
Mammalian imprinted genes are associated with differentially methylated regions (DMRs) that are CpG methylated on one of the two parental chromosomes. In mice, at least 21 DMRs acquire differential methylation in the germline and many of them act as imprint centres. We previously reported the physical extents of differential methylation at 15 DMRs in mouse embryos at 12.5 days postcoitum. To reveal the ontogeny of differential methylation, we determined and compared methylation patterns of the corresponding regions in sperm and oocytes. We found that the extent of the gametic DMRs differs significantly from that of the embryonic DMRs, especially in the case of paternal gametic DMRs. These results suggest that the gametic DMR sequences should be used to extract the features specifying methylation imprint establishment in the germline: from this analysis, we noted that the maternal gametic DMRs appear as unmethylated islands in male germ cells, which suggests a novel component in the mechanism of gamete-specific marking. Analysis of selected DMRs in blastocysts revealed dynamic changes in allelic methylation in early development, indicating that DMRs are not fully protected from the major epigenetic reprogramming events occurring during preimplantation development. Furthermore, we observed non-CpG methylation in oocytes, but not in sperm, which disappeared by the blastocyst stage. Non-CpG methylation was frequently found at maternally methylated DMRs as well as non-DMR regions, suggesting its prevalence in the oocyte genome. These results provide evidence for a unique methylation profile in oocytes and reveal the surprisingly dynamic nature of DMRs in the early embryo.  相似文献   
945.
Thermotolerance of entomopathogenic (insect-killing) fungi should be seriously considered before industrialization. This work describes the feasibility of millet grain as a substrate for production of thermotolerant Beauveria bassiana (Bb) GHA and ERL1170 and Metarhizium anisopliae (Ma) ERL1171 and ERL1540 conidia. First, conidial suspensions of the Bb isolates, produced on millet grain in polyethylene bags, were exposed to five temperatures (43–47°C) at 15-min intervals for up to 120 min (experiment I). Agar-based quarter-strength (¼) Sabouraud dextrose agar supplemented with yeast extract (SDAY) and whey permeate media served as controls. Millet-grain-based culture was superior in producing the most thermotolerant Bb conidia, followed by whey permeate agar and ¼SDAY-based cultures. Secondly, to compare the thermotolerance of conidia produced at the same conditions, the Bb isolates were then produced on agar-based millet powder medium, with ¼SDAY and whey permeate agar media as controls, and the two Ma isolates were added (experiment II). They were then exposed to the same temperatures as above. More thermotolerant Bb and Ma conidia were produced on millet powder agar than on whey permeate agar and ¼SDAY overall. These results suggest that millet grain can be used as a substrate to produce thermotolerant conidia in a mass production system.  相似文献   
946.
Because MUC1 carries a variety of sialoglycans that are possibly recognized by the siglec family, we examined MUC1-binding siglecs and found that Siglec-9 prominently bound to MUC1. An immunochemical study showed that Siglec-9-positive immune cells were associated with MUC1-positive cells in human colon, pancreas, and breast tumor tissues. We investigated whether or not this interaction has any functional implications for MUC1-expressing cells. When mouse 3T3 fibroblast cells and a human colon cancer cell line, HCT116, stably transfected with MUC1cDNA were ligated with recombinant soluble Siglec-9, β-catenin was recruited to the MUC1 C-terminal domain, which was enhanced on stimulation with soluble Siglec-9 in dose- and time-dependent manners. A co-culture model of MUC1-expressing cells and Siglec-9-expressing cells mimicking the interaction between MUC1-expressing malignant cells, and Siglec-9-expressing immune cells in a tumor microenvironment was designed. Brief co-incubation of Siglec-9-expressing HEK293 cells, but not mock HEK293 cells, with MUC1-expressing cells similarly enhanced the recruitment of β-catenin to the MUC1 C-terminal domain. In addition, treatment of MUC1-expressing cells with neuraminidase almost completely abolished the effect of Siglec-9 on MUC1-mediated signaling. The recruited β-catenin was thereafter transported to the nucleus, leading to cell growth. These findings suggest that Siglec-9 expressed on immune cells may play a role as a potential counterreceptor for MUC1 and that this signaling may be another MUC1-mediated pathway and function in parallel with a growth factor-dependent pathway.  相似文献   
947.
Obtaining a homogenous population of central nervous system neurons has been a significant challenge in neuroscience research; however, a recent study established a retinoic acid-treated embryoid bodies-based differentiation protocol that permits the effective generation of highly homogeneous glutamatergic cortical pyramidal neurons from embryonic stem cells. We were able to reproduce this protocol regarding the purity of glutamatergic neurons, but these neurons were not sufficiently healthy for long-term observation under the same conditions that were originally described. Here, we achieved a substantial improvement in cell survival by applying a simple technique: We changed the medium for glutamatergic neurons from the original complete medium to commercially available SBM (the Nerve-Cell Culture Medium manufactured by Sumitomo Bakelite Co. Ltd.) and finally succeeded in maintaining healthy neurons for at least 3 weeks without decreasing their purity. Because SBM contains glial conditioned medium, we postulated that brain-derived neurotrophic factor or basic fibroblast growth factor is the key components responsible for pro-survival effect of SBM on neurons, and examined their effects by adding them to CM. As a result, neither of them had pro-survival effect on pure glutamatergic neuronal population.  相似文献   
948.
949.
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号