首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1102篇
  免费   84篇
  2022年   7篇
  2021年   16篇
  2020年   7篇
  2019年   6篇
  2018年   8篇
  2017年   14篇
  2016年   19篇
  2015年   33篇
  2014年   28篇
  2013年   96篇
  2012年   61篇
  2011年   43篇
  2010年   37篇
  2009年   35篇
  2008年   39篇
  2007年   50篇
  2006年   47篇
  2005年   52篇
  2004年   41篇
  2003年   44篇
  2002年   51篇
  2001年   46篇
  2000年   47篇
  1999年   31篇
  1998年   17篇
  1997年   11篇
  1996年   7篇
  1994年   8篇
  1993年   13篇
  1992年   28篇
  1991年   30篇
  1990年   21篇
  1989年   28篇
  1988年   16篇
  1987年   21篇
  1986年   10篇
  1985年   9篇
  1984年   5篇
  1983年   6篇
  1982年   5篇
  1980年   5篇
  1979年   15篇
  1978年   12篇
  1977年   8篇
  1976年   5篇
  1974年   4篇
  1973年   8篇
  1972年   7篇
  1971年   5篇
  1970年   4篇
排序方式: 共有1186条查询结果,搜索用时 31 毫秒
91.
Refinement of the neural circuit during brain maturation is regulated by experience-driven neural activity. In the mammalian visual cortex, monocular visual deprivation (MD) in the early postnatal life causes a significant loss of cortical responses to a deprived eye and the retraction of input axons serving the deprived eye. A competitive interaction between inputs serving both eyes has been supposed to underlie the effects of MD because the loss of cortical response is much weaker when both eyes are deprived of vision. Also, the input axons do not retract after binocular deprivation. Here, we report that uncorrelated activity between presynaptic and postsynaptic neurons can solely lead to the retraction of geniculocortical axons in the absence of activity imbalance between two inputs. We analyzed the morphology of geniculocortical axons in a pharmacologically inhibited visual cortex of animals with normal vision and of binocularly deprived animals. In the normal vision animals, the axonal arbors in the inhibited cortex showed robust retraction. On the other hand, the arbors in binocularly deprived animals remained mostly intact. These results suggest that a homosynaptic associative mechanism, rather than a heterosynaptic competition between inputs, may play an important role in experience-driven axon retraction.  相似文献   
92.
Recombinant human (rh) renin was expressed in Sf-9 insect cells. Baculovirus-infected Sf-9 cells produced active rh-renin in the late stage of cultivation. The rh-renin was purified after 5 d of culture by two steps of column chromatography. Approximately 0.61 mg of pure rh-renin was obtained from 200 ml of culture medium with a yield of 35.3%.  相似文献   
93.
94.
Alkaline lignin was thermally converted to microporous carbon in ca. 50% yield by heating up from room temperature to 900 °C without activation process under flowing of an argon gas. The carbonized material prepared by heating up conditions of 1 °C min−1 showed 530 m2/g of the Brunauer-Emmett-Teller (BET) specific surface area, which increased to 740 m2/g after washing with water. Furthermore, alkaline lignin derivatives were structured as micron scale particles by micelle formation and polymer gelation techniques. Carbonization of the structured lignins could afford high porous materials having BET surface areas above 1000 m2/g without surface activation processes.  相似文献   
95.
TRIC channel subtypes, namely TRIC-A and TRIC-B, are intracellular monovalent cation channels postulated to mediate counter-ion movements facilitating physiological Ca(2+) release from internal stores. Tric-a-knockout mice developed hypertension during the daytime due to enhanced myogenic tone in resistance arteries. There are two Ca(2+) release mechanisms in vascular smooth muscle cells (VSMCs); incidental opening of ryanodine receptors (RyRs) generates local Ca(2+) sparks to induce hyperpolarization, while agonist-induced activation of inositol trisphosphate receptors (IP(3)Rs) evokes global Ca(2+) transients causing contraction. Tric-a gene ablation inhibited RyR-mediated hyperpolarization signaling to stimulate voltage-dependent Ca(2+) influx, and adversely enhanced IP(3)R-mediated Ca(2+) transients by overloading Ca(2+) stores in VSMCs. Moreover, association analysis identified single-nucleotide polymorphisms (SNPs) around the human TRIC-A gene that increase hypertension risk and restrict the efficiency of antihypertensive drugs. Therefore, TRIC-A channels contribute to maintaining blood pressure, while TRIC-A SNPs could provide biomarkers for constitutional diagnosis and personalized medical treatment of essential hypertension.  相似文献   
96.
Relief from painful diabetic neuropathy is an important clinical issue. We have previously shown that the transplantation of cultured endothelial progenitor cells or mesenchymal stem cells ameliorated diabetic neuropathy in rats. In this study, we investigated whether transplantation of freshly isolated bone marrow-derived mononuclear cells (BM-MNCs) alleviates neuropathic pain in the early stage of streptozotocin-induced diabetic rats. Two weeks after STZ injection, BM-MNCs or vehicle saline were injected into the unilateral hind limb muscles. Mechanical hyperalgesia and cold allodynia in SD rats were measured as the number of foot withdrawals to von Frey hair stimulation and acetone application, respectively. Two weeks after the BM-MNC transplantation, sciatic motor nerve conduction velocity (MNCV), sensory nerve conduction velocity (SNCV), sciatic nerve blood flow (SNBF), mRNA expressions and histology were assessed. The BM-MNC transplantation significantly ameliorated mechanical hyperalgesia and cold allodynia in the BM-MNC-injected side. Furthermore, the slowed MNCV/SNCV and decreased SNBF in diabetic rats were improved in the BM-MNC-injected side. BM-MNC transplantation improved the decreased mRNA expression of NT-3 and number of microvessels in the hind limb muscles. There was no distinct effect of BM-MNC transplantation on the intraepidermal nerve fiber density. These results suggest that autologous transplantation of BM-MNCs could be a novel strategy for the treatment of painful diabetic neuropathy.  相似文献   
97.
Murine bone marrow stromal cells differentiate not only into mesodermal derivatives, such as osteocytes, chondrocytes, adipocytes, skeletal myocytes, and cardiomyocytes, but also into neuroectodermal cells in vitro. Human bone marrow stromal cells are easy to isolate but difficult to study because of their limited life span. To overcome this problem, we attempted to prolong the life span of bone marrow stromal cells and investigated whether bone marrow stromal cells modified with bmi-1, hTERT, E6, and E7 retained their differentiated capability, or multipotency. In this study, we demonstrated that the life span of bone marrow stromal cells derived from a 91-year-old donor could be extended and that the stromal cells with an extended life span differentiated into neuronal cells in vitro. We examined the neuronally differentiated cells morphologically, physiologically, and biologically and compared the gene profiles of undifferentiated and differentiated cells. The neuronally differentiated cells exhibited characteristics similar to those of midbrain neuronal progenitors. Thus, the results of this study support the possible use of autologous-cell graft systems to treat central nervous system diseases in geriatric patients.  相似文献   
98.
99.
Extremely low frequency (ELF) magnetic fields (MFs) were measured at 696 points in a room of a Japanese apartment building. The building had 124 rooms with layouts and wiring identical to those of the studied room. ELF-MFs exceeded 0.4 microT in 24% of the living space, and the maximum value, 1.8 microT, was detected at floor level. Analysis of the MF distribution revealed that 60 Hz 100 V electrical wiring for room lights within the floor and ceiling had been laid out in large rectangles, equivalent to 1 turn coils. Further plotting of the vertical components every 0.01 m on the floor indicated that the depth of the cable was 0.23 m. Further studies should be conducted in order to confirm that the building investigated in this pilot study is typical of Japanese apartment buildings in terms of ELF-MFs.  相似文献   
100.
The L1 family of cell adhesion molecules is predominantly expressed in the nervous system. Mutations in human L1 cause neuronal diseases such as HSAS, MASA, and SPG1. Here we show that sax-7 gene encodes an L1 homologue in Caenorhabditis elegans. In sax-7 mutants, the organization of ganglia and positioning of neurons are abnormal in the adult stage, but these abnormalities are not observed in early larval stage. Misplacement of neurons in sax-7 mutants is triggered by mechanical force linked to body movement. Short and long forms of SAX-7 exhibited strong and weak homophilic adhesion activities in in vitro aggregation assay, respectively, which correlated with their different activities in vivo. SAX-7 was localized on plasma membranes of neurons in vivo. Expression of SAX-7 only in a single neuron in sax-7 mutants cell-autonomously restored its normal neuronal position. Expression of SAX-7 in two different head neurons in sax-7 mutants led to the forced attachment of these neurons. We propose that both homophilic and heterophilic interactions of SAX-7 are essential for maintenance of neuronal positions in organized ganglia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号