首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1102篇
  免费   84篇
  2022年   7篇
  2021年   16篇
  2020年   7篇
  2019年   6篇
  2018年   8篇
  2017年   14篇
  2016年   19篇
  2015年   33篇
  2014年   28篇
  2013年   96篇
  2012年   61篇
  2011年   43篇
  2010年   37篇
  2009年   35篇
  2008年   39篇
  2007年   50篇
  2006年   47篇
  2005年   52篇
  2004年   41篇
  2003年   44篇
  2002年   51篇
  2001年   46篇
  2000年   47篇
  1999年   31篇
  1998年   17篇
  1997年   11篇
  1996年   7篇
  1994年   8篇
  1993年   13篇
  1992年   28篇
  1991年   30篇
  1990年   21篇
  1989年   28篇
  1988年   16篇
  1987年   21篇
  1986年   10篇
  1985年   9篇
  1984年   5篇
  1983年   6篇
  1982年   5篇
  1980年   5篇
  1979年   15篇
  1978年   12篇
  1977年   8篇
  1976年   5篇
  1974年   4篇
  1973年   8篇
  1972年   7篇
  1971年   5篇
  1970年   4篇
排序方式: 共有1186条查询结果,搜索用时 15 毫秒
131.
Smad-mediated regulation of microRNA biosynthesis   总被引:1,自引:0,他引:1  
Blahna MT  Hata A 《FEBS letters》2012,586(14):1906-1912
  相似文献   
132.
The neoplastic transformation by mutant RAS is thought to require remodeling of expression of an entire set of genes. However, the underlying mechanism for initiation of gene expression remodeling in tumorigenesis remains elusive. This study was aimed to define the oncogenic role of EZH2, a histone modifier protein that is induced by oncogenic mutant RAS, using pancreatic cancers of transgenic rats exogenously expressing human mutant RAS. Immunohistochemical observation of preneoplastic or cancerous lesions in the animal model suggested that upregulation of Ezh2 protein is an initiating event in pancreatic carcinogenesis. MEK-inhibition or Elk-1-knockdown downregulated EZH2, and MEK-inhibition or EZH2-knockdown restored expression of a tumor suppressor, RUNX3 in human and rat pancreatic cancer cells activated by the oncogenic RAS. Furthermore, Elk-1- or EZH2-knockdown inhibited growth of the cancer cells. These results strongly suggested that the oncogenic RAS upregulates EZH2 through MEK-ERK signaling, resulted in downregulation of tumor suppressors including RUNX3 in pancreatic carcinogenesis.  相似文献   
133.
Consomic strains, in which one chromosome is derived from a donor strain and the other chromosomes are derived from the recipient strain, provide a powerful tool for the dissection of complex genetic traits. In this study we established ten consomic strains (A-2SM, A-6SM, A-11SM, A-12SM, A-13SM, A-15SM, A-17SM, A-18SM, A-19SM, A-YSM) using the SM/J strain as the donor and the A/J strain as the recipient; these are the parental strains of a set of SMXA recombinant inbred (RI) strains that we had developed previously. We analyzed body weights and blood lipid levels in the consomic and parental strains. The mean values for each trait showed a continuous range of variation in the consomic strains suggesting that they are controlled by multiple genes. We previously identified suggestive QTLs for body weight on chromosome 6 in SMXA RI strains and (SM/J?×?A/J)F2 mice. The observation that the A-6SM consomic strain had a significantly lower mean body weight than the A/J strain supports the presence of this QTL on chromosome 6. Similarly, the higher blood triglyceride level in the A-11SM strain shows the existence of a previously mapped QTL on chromosome 11, and the A-12SM strain provides evidence of a QTL for blood total cholesterol level on chromosome 12. These consomic strains, along with the previously developed set of SMXA RI strains from A/J and SM/J mice, offer an invaluable and powerful resource for the analysis of complex genetic traits in mice.  相似文献   
134.
135.
136.
137.
Highlights? Palmitate induces β cell dysfunction by activating inflammatory processes in islets ? β cells sense palmitate via the TLR4 pathway and recruit M1 macrophages to islets ? M1 macrophages play a pivotal role in palmitate-induced β cell dysfunction ? M1 macrophages and inflammation also play a role in β cell dysfunction in T2D models  相似文献   
138.
During pathophysiological muscle wasting, a family of ubiquitin ligases, including muscle RING-finger protein-1 (MuRF1), has been proposed to trigger muscle protein degradation via ubiquitination. Here, we characterized skeletal muscles from wild-type (WT) and MuRF1 knockout (KO) mice under amino acid (AA) deprivation as a model for physiological protein degradation, where skeletal muscles altruistically waste themselves to provide AAs to other organs. When WT and MuRF1 KO mice were fed a diet lacking AA, MuRF1 KO mice were less susceptible to muscle wasting, for both myocardium and skeletal muscles. Under AA depletion, WT mice had reduced muscle protein synthesis, while MuRF1 KO mice maintained nonphysiologically elevated levels of skeletal muscle protein de novo synthesis. Consistent with a role of MuRF1 for muscle protein turnover during starvation, the concentrations of essential AAs, especially branched-chain AAs, in the blood plasma significantly decreased in MuRF1 KO mice under AA deprivation. To clarify the molecular roles of MuRF1 for muscle metabolism during wasting, we searched for MuRF1-associated proteins using pull-down assays and mass spectrometry. Muscle-type creatine kinase (M-CK), an essential enzyme for energy metabolism, was identified among the interacting proteins. Coexpression studies revealed that M-CK interacts with the central regions of MuRF1 including its B-box domain and that MuRF1 ubiquitinates M-CK, which triggers the degradation of M-CK via proteasomes. Consistent with MuRF1's role of adjusting CK activities in skeletal muscles by regulating its turnover in vivo, we found that CK levels were significantly higher in the MuRF1 KO mice than in WT mice. Glucocorticoid modulatory element binding protein-1 and 3-hydroxyisobutyrate dehydrogenase, previously identified as potential MuRF1-interacting proteins, were also ubiquitinated MuRF1-dependently. Taken together, these data suggest that, in a multifaceted manner, MuRF1 participates in the regulation of AA metabolism, including the control of free AAs and their supply to other organs under catabolic conditions, and in the regulation of ATP synthesis under metabolic-stress conditions where MuRF1 expression is induced.  相似文献   
139.
We have previously reported the TLR4 expression in human intestinal lymphatic vessels. In the study here, microarray analysis showed the expression of the TLR4, MD-2, CD14, MyD88, TIRAP, TRAM, IRAK1, and TRAF6 genes in cultured human neonatal dermal lymphatic microvascular endothelial cells (LEC). The microarray analysis also showed that LEC expressed genes of IL-6, IL-8, VCAM-1, and ICAM-1, and the real-time quantitative PCR analysis showed that mRNA production was increased by lipopolysaccharide (LPS). The LPS-induced IL-6, IL-8, VCAM-1, and ICAM-1 production in LEC was suppressed by the introduction of TLR4-specific small interfering RNA, and also by anti-TLR4, nobiletin, and CAPE pretreatment. These findings suggest that LEC has TLR4-mediated LPS recognition mechanisms that involve at least activation of NF-kappaB, resulting in increased expression of IL-6, IL-8, VCAM-1, and ICAM-1. Both the LPS effect on the gene expression and also the suppression by nobiletin and CAPE pretreatment on the protein production were larger in IL-6 and in VCAM-1 than in IL-8 and in ICAM-1 in LEC. The signal transduction of NF-kappaB and AP-1-dependent pathway may be more critical for the expression of IL-6 and VCAM-1 than that of IL-8 and ICAM-1 in LEC.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号