首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   16篇
  国内免费   1篇
  203篇
  2023年   2篇
  2022年   5篇
  2021年   11篇
  2020年   6篇
  2019年   13篇
  2018年   13篇
  2017年   8篇
  2016年   9篇
  2015年   8篇
  2014年   7篇
  2013年   15篇
  2012年   9篇
  2011年   10篇
  2010年   7篇
  2009年   4篇
  2008年   7篇
  2007年   7篇
  2006年   8篇
  2005年   10篇
  2004年   6篇
  2003年   6篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1986年   4篇
  1983年   2篇
  1979年   1篇
  1978年   1篇
  1968年   1篇
  1939年   1篇
排序方式: 共有203条查询结果,搜索用时 15 毫秒
41.
42.
Ancient Persia witnessed one of its most prosperous cultural and socio-economic periods between 550 bc and ad 651, with the successive domination of the Achaemenid, Seleucid, Parthian and Sassanian Empires. During this period agricultural activities increased on the Iranian plateau, as demonstrated by a remarkable arboricultural expansion. However, available data are not very informative about the spatial organization of agricultural practices. The possible links between climate conditions and agricultural activities during this millennium of continuous imperial domination are also unclear, due to the lack of parallel human-independent palaeoclimatic proxies. This study presents a new late Holocene pollen-based vegetation record from Lake Parishan, SW Iran. This record provides invaluable information regarding anthropogenic activities before, during and after the empires and sheds light on (i) spatial patterning in agricultural activities and (ii) possible climate impacts on agro-sylvo-pastoral practices during this period. Results of this study indicate that arboriculture was the most prominent form of agricultural activity in SW Iran especially during the Achaemenid, Seleucid and Parthian periods. Contrary to the information provided by some Greco-Roman written sources, the record from Lake Parishan shows that olive cultivation was practiced during Achaemenid and Seleucid times, when olive cultivation was significant, at least in this basin located close to the capital area of the Achaemenid Empire. In addition, pollen from aquatic vegetation suggests that the period of the latter centuries of the first millennium bc was characterized by a higher lake level, which might have favoured cultural and socio-economic prosperity.  相似文献   
43.
Three nitroxide spin-labeled monoderivatives of bovine pancreatic trypsin inhibitor were prepared with the amino-specific reagent succinimidyl 1-oxy-2,2,5,5-tetramethyl-3-pyrroline-3-carboxylate. The monoderivatives were purified by ion-exchange and affinity chromatography. Thin-layer maps of tryptic peptides of the monoderivatives showed that the spin-label was incorporated at either the alpha-amino group, Lys-15, or Lys-26. Two-dimensional J-correlated 1H NMR spectra of the monoderivatives were recorded. Spectra were also recorded after reduction by ascorbic acid of the nitroxide label to hydroxylamine. With the nitroxide label present, significant line-broadening effects on many of the cross peaks in the spectra were observed. The extent of line broadening for the C alpha H-NH cross peaks was qualitatively correlated with the distance between the labeled amino group and the average C alpha H-NH position in the crystal structure. The spin-label affects cross peaks of protons within approximately 15 A. This study suggests that it is feasible to accumulate sufficient intramolecular distances in order to determine protein solution structures with the aid of distance geometry algorithms.  相似文献   
44.
Scaffold‐based tissue engineering is considered as a promising approach in the regenerative medicine. Graft instability of collagen, by causing poor mechanical properties and rapid degradation, and their hard handling remains major challenges to be addressed. In this research, a composite structured nano‐/microfibrous scaffold, made from a mixture of chitosan–ß‐glycerol phosphate–gelatin (chitosan–GP–gelatin) using a standard electrospinning set‐up was developed. Gelatin–acid acetic and chitosan ß‐glycerol phosphate–HCL solutions were prepared at ratios of 30/70, 50/50, 70/30 (w/w) and their mechanical and biological properties were engineered. Furthermore, the pore structure of the fabricated nanofibrous scaffolds was investigated and predicted using a theoretical model. Higher gelatin concentrations in the polymer blend resulted in significant increase in mean pore size and its distribution. Interaction between the scaffold and the contained cells was also monitored and compared in the test and control groups. Scaffolds with higher chitosan concentrations showed higher rate of cell attachment with better proliferation property, compared with gelatin‐only scaffolds. The fabricated scaffolds, unlike many other natural polymers, also exhibit non‐toxic and biodegradable properties in the grafted tissues. In conclusion, the data clearly showed that the fabricated biomaterial is a biologically compatible scaffold with potential to serve as a proper platform for retaining the cultured cells for further application in cell‐based tissue engineering, especially in wound healing practices. These results suggested the potential of using mesoporous composite chitosan–GP–gelatin fibrous scaffolds for engineering three‐dimensional tissues with different inherent cell characteristics. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 163–175, 2016.  相似文献   
45.
About 7000 rare, or orphan, diseases affect more than 350 million people worldwide. Although these conditions collectively pose significant health care problems, drug companies seldom develop drugs for orphan diseases due to extremely limited individual markets. Consequently, developing new treatments for often life-threatening orphan diseases is primarily contingent on financial incentives from governments, special research grants, and private philanthropy. Computer-aided drug repositioning is a cheaper and faster alternative to traditional drug discovery offering a promising venue for orphan drug research. Here, we present eRepo-ORP, a comprehensive resource constructed by a large-scale repositioning of existing drugs to orphan diseases with a collection of structural bioinformatics tools, including eThread, eFindSite, and eMatchSite. Specifically, a systematic exploration of 320,856 possible links between known drugs in DrugBank and orphan proteins obtained from Orphanet reveals as many as 18,145 candidates for repurposing. In order to illustrate how potential therapeutics for rare diseases can be identified with eRepo-ORP, we discuss the repositioning of a kinase inhibitor for Ras-associated autoimmune leukoproliferative disease. The eRepo-ORP data set is available through the Open Science Framework at https://osf.io/qdjup/.  相似文献   
46.
Using cell‐based engineered skin is an emerging strategy for treating difficult‐to‐heal wounds. To date, much endeavor has been devoted to the fabrication of appropriate scaffolds with suitable biomechanical properties to support cell viability and growth in the microenvironment of a wound. The aim of this research was to assess the impact of adipose tissue‐derived mesenchymal stem cells (AD‐MSCs) and keratinocytes on gelatin/chitosan/β‐glycerol phosphate (GCGP) nanoscaffold in full‐thickness excisional skin wound healing of rats. For this purpose, AD‐MSCs and keratinocytes were isolated from rats and GCGP nanoscaffolds were electrospun. Through an in vivo study, the percentage of wound closure was assessed on days 7, 14, and 21 after wound induction. Samples were taken from the wound sites in order to evaluate the density of collagen fibers and vessels at 7 and 14 days. Moreover, sampling was done on days 7 and 14 from wound sites to assess the density of collagen fibers and vessels. The wound closure rate was significantly increased in the keratinocytes‐AD‐MSCs‐scaffold (KMS) group compared with other groups. The expressions of vascular endothelial growth factor, collagen type 1, and CD34 were also significantly higher in the KMS group compared with the other groups. These results suggest that the combination of AD‐MSCs and keratinocytes seeded onto GCGP nanoscaffold provides a promising treatment for wound healing.  相似文献   
47.
Lovastatin is a potent inhibitor of protein prenylation, and it has been reported to have pleiotropic cellular effects. In the present study we have elucidated the effects of lovastatin on cell cycle progression and apoptosis of normal human B-lymphocytes. When added to B-lymphocytes stimulated with anti-immunoglobulin (anti-mu) and SAC, lovastatin (20 microM) inhibited the cells in the late G1 phase of the cell cycle. Thus, no early activation parameters such as Ca(2+) flux or MYC induction were affected by lovastatin, whereas progression of cells into the second cell cycle as well as DNA synthesis was markedly reduced. We therefore examined the effects of lovastatin on components of the cell cycle machinery responsible for regulating the G1/S transition. We demonstrated that pRB phosphorylation, cdk2 activity needed for this phosphorylation, and the levels of cyclin A, D, and E were inhibited after 24 h of lovastatin treatment, while the levels of p27(Kip1) were elevated. There was no effect on p21(Cip1), cyclin D2, cdk4, and cdk6. These data are consistent with the cells being inhibited by lovastatin between 24 and 32 h into G1. Lovastatin added to stimulated B-cells in late G1 still inhibited the DNA synthesis by 60%, but at this point only minor effects were noted on the cell cycle machinery. We therefore looked for induced apoptosis as an explanation for reduced S-phase entry of the cells. However, despite the ability to enhance the apoptosis of unstimulated B-cells from 48 to 61% as judged by the TUNEL method, lovastatin only marginally affected apoptosis when administered to stimulated B-cells. Thus, it appears that accelerated apoptosis cannot account for the effect of lovastatin on cell cycle progression.  相似文献   
48.
49.
During neuromuscular synaptogenesis, the exchange of spatially localized signals between nerve and muscle initiates the coordinated focal accumulation of the acetylcholine (ACh) release machinery and the ACh receptors (AChRs). One of the key first steps is the release of the proteoglycan agrin focalized at the axon tip, which induces the clustering of AChRs on the postsynaptic membrane at the neuromuscular junction. The lack of a suitable method for focal application of agrin in myotube cultures has limited the majority of in vitro studies to the application of agrin baths. We used a microfluidic device and surface microengineering to focally stimulate muscle cells with agrin at a small portion of their membrane and at a time and position chosen by the user. The device is used to verify the hypothesis that focal application of agrin to the muscle cell membrane induces local aggregation of AChRs in differentiated C2C12 myotubes.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号