首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5899篇
  免费   410篇
  国内免费   9篇
  2023年   19篇
  2022年   49篇
  2021年   115篇
  2020年   59篇
  2019年   98篇
  2018年   137篇
  2017年   113篇
  2016年   135篇
  2015年   257篇
  2014年   252篇
  2013年   375篇
  2012年   460篇
  2011年   502篇
  2010年   289篇
  2009年   263篇
  2008年   415篇
  2007年   398篇
  2006年   403篇
  2005年   350篇
  2004年   330篇
  2003年   304篇
  2002年   301篇
  2001年   54篇
  2000年   40篇
  1999年   64篇
  1998年   97篇
  1997年   30篇
  1996年   49篇
  1995年   35篇
  1994年   31篇
  1993年   30篇
  1992年   31篇
  1991年   21篇
  1990年   19篇
  1989年   13篇
  1988年   11篇
  1987年   6篇
  1986年   8篇
  1985年   9篇
  1984年   12篇
  1983年   8篇
  1982年   22篇
  1981年   12篇
  1980年   12篇
  1979年   7篇
  1978年   6篇
  1977年   10篇
  1976年   7篇
  1975年   6篇
  1974年   7篇
排序方式: 共有6318条查询结果,搜索用时 46 毫秒
151.
The central organelle within the secretory pathway is the Golgi apparatus, a collection of flattened membranes organized into stacks. The cisternal maturation model of intra-Golgi transport depicts Golgi cisternae that mature from cis to medial to trans by receiving resident proteins, such as glycosylation enzymes via retrograde vesicle-mediated recycling. The conserved oligomeric Golgi (COG) complex, a multi-subunit tethering complex of the complexes associated with tethering containing helical rods family, organizes vesicle targeting during intra-Golgi retrograde transport. The COG complex, both physically and functionally, interacts with all classes of molecules maintaining intra-Golgi trafficking, namely SNAREs, SNARE-interacting proteins, Rabs, coiled-coil tethers, vesicular coats, and molecular motors. In this report, we will review the current state of the COG interactome and analyze possible scenarios for the molecular mechanism of the COG orchestrated vesicle targeting, which plays a central role in maintaining glycosylation homeostasis in all eukaryotic cells.  相似文献   
152.
Hypostomus is a species-rich genus of fish with unclear systematics and phylogenetic relationships. Ten species of Hypostomus (H. albopunctatus, H. ancistroides, H. cochliodon, H. commersoni, H. faveolus, H. hermanni, H. aff. paulinus, H. regani, H. strigaticeps and H. topavae) were cytogenetically analyzed through Giemsa staining and silver nitrate impregnation, and the obtained data were correlated to the available biogeographical and phylogenetic analyses for the genus. Although the silver stained nucleolar organizer regions (AgNORs) were found to vary significantly among the species, the diploid numbers could be correlated to the distribution of the species on northern and southern South America river basins. Species with the lower diploid numbers (2n = 64) were associated to northern hydrographic basins and showed a single AgNORs bearing pair. Diploid numbers of 66–68 chromosomes and of 70–84 chromosomes were correlated to two major clades within Hypostomus and southern hydrographic basins, and showed AgNORs varying on number and position. Our results show that cytogenetic data can be correlated to the phylogeny and biogeography of the genus, helping to clarify its complex evolutionary history.  相似文献   
153.
The abundant existence of proteins and regions that possess specific functions without being uniquely folded into unique 3D structures has become accepted by a significant number of protein scientists. Sequences of these intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) are characterized by a number of specific features, such as low overall hydrophobicity and high net charge which makes these proteins predictable. IDPs/IDPRs possess large hydrodynamic volumes, low contents of ordered secondary structure, and are characterized by high structural heterogeneity. They are very flexible, but some may undergo disorder to order transitions in the presence of natural ligands. The degree of these structural rearrangements varies over a very wide range. IDPs/IDPRs are tightly controlled under the normal conditions and have numerous specific functions that complement functions of ordered proteins and domains. When lacking proper control, they have multiple roles in pathogenesis of various human diseases. Gaining structural and functional information about these proteins is a challenge, since they do not typically “freeze” while their “pictures are taken.” However, despite or perhaps because of the experimental challenges, these fuzzy objects with fuzzy structures and fuzzy functions are among the most interesting targets for modern protein research. This review briefly summarizes some of the recent advances in this exciting field and considers some of the basic lessons learned from the analysis of physics, chemistry, and biology of IDPs.  相似文献   
154.
Plasmids have long been recognized as an important driver of DNA exchange and genetic innovation in prokaryotes. The success of plasmids has been attributed to their independent replication from the host''s chromosome and their frequent self-transfer. It is thought that plasmids accumulate, rearrange and distribute nonessential genes, which may provide an advantage for host proliferation under selective conditions. In order to test this hypothesis independently of biases from culture selection, we study the plasmid metagenome from microbial communities in two activated sludge systems, one of which receives mostly household and the other chemical industry wastewater. We find that plasmids from activated sludge microbial communities carry among the largest proportion of unknown gene pools so far detected in metagenomic DNA, confirming their presumed role of DNA innovators. At a system level both plasmid metagenomes were dominated by functions associated with replication and transposition, and contained a wide variety of antibiotic and heavy metal resistances. Plasmid families were very different in the two metagenomes and grouped in deep-branching new families compared with known plasmid replicons. A number of abundant plasmid replicons could be completely assembled directly from the metagenome, providing insight in plasmid composition without culturing bias. Functionally, the two metagenomes strongly differed in several ways, including a greater abundance of genes for carbohydrate metabolism in the industrial and of general defense factors in the household activated sludge plasmid metagenome. This suggests that plasmids not only contribute to the adaptation of single individual prokaryotic species, but of the prokaryotic community as a whole under local selective conditions.  相似文献   
155.
Sanger sequencing is a common method of reading DNA sequences. It is less expensive than high-throughput methods, and it is appropriate for numerous applications including molecular diagnostics. However, sequencing mixtures of similar DNA of pathogens with this method is challenging. This is important because most clinical samples contain such mixtures, rather than pure single strains. The traditional solution is to sequence selected clones of PCR products, a complicated, time-consuming, and expensive procedure. Here, we propose the base-calling with vocabulary (BCV) method that computationally deciphers Sanger chromatograms obtained from mixed DNA samples. The inputs to the BCV algorithm are a chromatogram and a dictionary of sequences that are similar to those we expect to obtain. We apply the base-calling function on a test dataset of chromatograms without ambiguous positions, as well as one with 3–14% sequence degeneracy. Furthermore, we use BCV to assemble a consensus sequence for an HIV genome fragment in a sample containing a mixture of viral DNA variants and to determine the positions of the indels. Finally, we detect drug-resistant Mycobacterium tuberculosis strains carrying frameshift mutations mixed with wild-type bacteria in the pncA gene, and roughly characterize bacterial communities in clinical samples by direct 16S rRNA sequencing.  相似文献   
156.
The aim of this study was to determine a genetic basis for IgA concentration in milk of Bos taurus. We used a Holstein-Friesian x Jersey F2 crossbred pedigree to undertake a genome-wide search for QTL influencing IgA concentration and yield in colostrum and milk. We identified a single genome-wide significant QTL on chromosome 16, maximising at 4.8 Mbp. The polymeric immunoglobulin receptor gene (PIGR) was within the confidence interval of the QTL. In addition, mRNA expression analysis revealed a liver PIGR expression QTL mapping to the same locus as the IgA quantitative trait locus. Sequencing and subsequent genotyping of the PIGR gene revealed three divergent haplotypes that explained the variance of both the IgA QTL and the PIGR expression QTL. Genetic selection based on these markers will facilitate the production of bovine herds producing milk with higher concentrations of IgA.  相似文献   
157.
158.
159.
A teat bio-sealant was developed using Weissella cibaria, and the bio-sealant’s technological and functional properties were assessed. The development included four experimental phases that were analyzed using independent experimental designs. Initially, sterilized or pasteurized Aloe vera gels were used, and the effect of heat treatment was investigated. In the second phase, the effects of time, storage temperature, and addition of cryopreservatives on the viability of the probiotic were observed. The third phase consisted of evaluating the synergistic effects of the cryopreservatives. The fourth phase involved selecting a material that would provide viscosity to the teat sealant. Technological and functional properties were measured in terms of viability of W. cibaria, and antimicrobial activity against Staphylococcus aureus and Streptococcus agalactiae was also analyzed. A mixture of milk powder and glycerol preserved this antimicrobial activity. Pullulan provided greater viscosity and maintained the technological and functional properties of the bio-sealant for 29 days. This teat bio-sealant can be used as an alternative for the prevention of bovine mastitis.  相似文献   
160.
Karyotype evolution in Carnivora is thoroughly studied by classical and molecular cytogenetics and supplemented by reconstructions of Ancestral Carnivora Karyotype (ACK). However chromosome painting information from two pinniped families (Odobenidae and Otariidae) is noticeably missing. We report on the construction of the comparative chromosome map for species from each of the three pinniped families: the walrus (Odobenus rosmarus, Odobenidae–monotypic family), near threatened Steller sea lion (Eumetopias jubatus, Otariidae) and the endemic Baikal seal (Pusa sibirica, Phocidae) using combination of human, domestic dog and stone marten whole-chromosome painting probes. The earliest karyological studies of Pinnipedia showed that pinnipeds were characterized by a pronounced karyological conservatism that is confirmed here with species from Phocidae, Otariidae and Odobenidae sharing same low number of conserved human autosomal segments (32). Chromosome painting in Pinnipedia and comparison with non-pinniped carnivore karyotypes provide strong support for refined structure of ACK with 2n = 38. Constructed comparative chromosome maps show that pinniped karyotype evolution was characterized by few tandem fusions, seemingly absent inversions and slow rate of genome rearrangements (less then one rearrangement per 10 million years). Integrative comparative analyses with published chromosome painting of Phoca vitulina revealed common cytogenetic signature for Phoca/Pusa branch and supports Phocidae and Otaroidea (Otariidae/Odobenidae) as sister groups. We revealed rearrangements specific for walrus karyotype and found the chromosomal signature linking together families Otariidae and Odobenidae. The Steller sea lion karyotype is the most conserved among three studied species and differs from the ACK by single fusion. The study underlined the strikingly slow karyotype evolution of the Pinnipedia in general and the Otariidae in particular.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号