首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2774篇
  免费   207篇
  2981篇
  2023年   8篇
  2022年   27篇
  2021年   53篇
  2020年   24篇
  2019年   39篇
  2018年   70篇
  2017年   55篇
  2016年   85篇
  2015年   114篇
  2014年   149篇
  2013年   173篇
  2012年   265篇
  2011年   243篇
  2010年   152篇
  2009年   145篇
  2008年   203篇
  2007年   176篇
  2006年   169篇
  2005年   160篇
  2004年   133篇
  2003年   161篇
  2002年   125篇
  2001年   23篇
  2000年   30篇
  1999年   13篇
  1998年   17篇
  1997年   22篇
  1996年   14篇
  1995年   8篇
  1994年   7篇
  1993年   13篇
  1992年   6篇
  1991年   5篇
  1990年   5篇
  1988年   5篇
  1987年   6篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1979年   3篇
  1978年   5篇
  1974年   6篇
  1973年   5篇
  1971年   8篇
  1969年   2篇
  1966年   2篇
  1958年   3篇
  1956年   2篇
  1953年   3篇
排序方式: 共有2981条查询结果,搜索用时 0 毫秒
101.
Degradation of acrylic copolymers by white-rot fungi   总被引:4,自引:0,他引:4  
Various water-soluble homopolymers and copolymers of acrylamide (AAm) and acrylic acid (AA) which contained phenolic sites, such as guaiacol, lignin sulfonate (LS) and 3,4-dihydroxybenzoic acid (3,4-DHBA), were tested with regard to their degradability by white-rot fungi. Compared with Phanerochaete chrysosporium, Pleurotus ostreatus caused a significantly higher decrease in the average molecular weight (w) of most of the copolymers and the homopolymer under the applied culture conditions. However, the w of poly(guaiacol/AAm) increased significantly during incubation with Pl ostreatus. P. chrysosporium was able to reduce only the w of the poly(LS/AA) to a significant degree and not that of the other polymers. The mineralization rate of AAm and AA copolymers and terpolymers of AAm, AA and phenolics (LS, 3,4-DHBA, guiacol), which were tested with P. ostreatus and Trametes versicolor, turned out to be low (0.8–3.2%). While the rates of mineralization were similar among all polymers, the decrease in radioactivity from the culture media was higher with the terpolymers bearing phenolic sites. UV spectra of the culture media revealed that the phenolic sites in the terpolymers were significantly degraded by both fungi. Obviously, the degradation of phenolics within the polymer chain caused a higher decrease in w but did not significantly increase the mineralization rate.  相似文献   
102.
103.
The protein-tyrosine phosphatase SHP-1 is a negative regulator of multiple signal transduction pathways. We observed that SHP-1 effectively antagonized Src-dependent phosphorylations in HEK293 cells. This occurred by dephosphorylation of Src substrates, because Src activity was unaffected in the presence of SHP-1. One reason for efficient dephosphorylation was activation of SHP-1 by Src. Recombinant SHP-1 had elevated activity subsequent to phosphorylation by Src in vitro, and SHP-1 variants with mutated phosphorylation sites in the C terminus, SHP-1 Y538F, and SHP-1 Y538F,Y566F were less active toward Src-generated phosphoproteins in intact cells. A second reason for efficient dephosphorylation is the substrate selectivity of SHP-1. Pull-down experiments with different GST-SHP-1 fusion proteins revealed efficient interaction of Src-generated phosphoproteins with the SHP-1 catalytic domain rather than with the SH2 domains. Phosphopeptides that correspond to good Src substrates were efficiently dephosphorylated by SHP-1 in vitro. Phosphorylated "optimal Src substrate" AEEEIpYGEFEA (where pY is phosphotyrosine) and a phosphopeptide corresponding to a recently identified Src phosphorylation site in p120 catenin, DDLDpY(296)GMMSD, were excellent SHP-1 substrates. Docking of these phosphopeptides into the catalytic domain of SHP-1 by molecular modeling was consistent with the biochemical data and explains the efficient interaction. Acidic residues N-terminal of the phosphotyrosine seem to be of major importance for efficient substrate interaction. Residues C-terminal of the phosphotyrosine probably contribute to the substrate selectivity of SHP-1. We propose that activation of SHP-1 by Src and complementary substrate specificities of SHP-1 and Src may lead to very transient Src signals in the presence of SHP-1.  相似文献   
104.
CD95 (Fas/Apo-1) triggers apoptotic cell death via a caspase-dependent pathway. Inhibition of caspase activation blocks proapoptotic signaling and thus, prevents execution of apoptosis. Besides induction of apoptotic cell death, CD95 has been reported to trigger necrotic cell death in susceptible cells. In this study, we investigated the interplay between apoptotic and necrotic cell death signaling in T cells. Using the agonistic CD95 antibody, 7C11, we found that caspase inhibition mediated by the pancaspase inhibitor, zVAD-fmk, prevented CD95-triggered cell death in Jurkat T cells but not in A3.01 T cells, although typical hallmarks of apoptosis, such as DNA fragmentation or caspase activation were blocked. Moreover, the caspase-independent cell death in A3.01 cells exhibited typical signs of necrosis as detected by a rapid loss of cell membrane integrity and could be prevented by treatment with the radical scavenger butylated hydroxyanisole (BHA). Similar to CD95-induced cell death, apoptosis triggered by the DNA topoisomerase inhibitors, camptothecin or etoposide was shifted to necrosis when capsase activation was inhibited. In contrast to this, ZVAD was fully protective when apoptosis was triggered by the serpase inhibitor, Nalpha-tosyl-phenyl-chloromethyl ketone (TPCK). TPCK was not protective when administered to anti-CD95/ZVAD-treated A3.01 cells, indicating that TPCK does not possess anti-necrotic activity but fails to activate the necrotic death pathway. Our findings show (a) that caspase inhibition does not always protect apoptotic T cells from dying but merely activates a caspase-independent mode of cell death that results in necrosis and (b) that the caspase-inhibitor-induced shift from apoptotic to necrotic cell death is dependent on the cell type and the proapoptotic stimulus.  相似文献   
105.
A new dopamine transporter (DAT) ligand, (E)-N-(3-iodoprop-2-enyl)-2β-carbofluoroethoxy-3β-(4′-methyl-phenyl) nortropane (FE-PE2I, 6), derived from PE2I (1), was prepared and found to be a potent inhibitor of rodent DAT in vitro. Compound 6 was radiolabelled with fluorine-18 (t1/2 = 109.8 min) for PET studies in monkeys. In vivo PET measurements showed a regional distribution in brain that corresponds to the known distribution of DAT. This binding was specific, reversible and the kinetics of [18F]6 binding in brain were faster than for its lead compound, [11C]1. The possible presence of a hydroxymethyl-radiometabolite formed by oxidation in the 3β-benzylic position of [18F]6 warrants further detailed evaluation of the metabolism of [18F]6. [18F]6 is a potential radioligand for imaging DATs in the human brain with PET.  相似文献   
106.
25-Hydroxyvitamin D3 1α-hydroxylase encoded by CYP27B1 converts 25-hydroxyvitamin D3 into 1α,25-dihydroxyvitamin D3, a vitamin D receptor ligand. 25-Hydroxyvitamin D3 has been regarded as a prohormone. Using Cyp27b1 knockout cells and a 1α-hydroxylase-specific inhibitor we provide in four cellular systems, primary mouse kidney, skin, prostate cells and human MCF-7 breast cancer cells, evidence that 25-hydroxyvitamin D3 has direct gene regulatory properties. The high expression of megalin, involved in 25-hydroxyvitamin D3 internalisation, in Cyp27b1?/? cells explains their higher sensitivity to 25-hydroxyvitamin D3. 25-Hydroxyvitamin D3 action depends on the vitamin D receptor signalling supported by the unresponsiveness of the vitamin D receptor knockout cells. Molecular dynamics simulations show the identical binding mode for both 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3 with the larger volume of the ligand-binding pocket for 25-hydroxyvitamin D3. Furthermore, we demonstrate direct anti-proliferative effects of 25-hydroxyvitamin D3 in human LNCaP prostate cancer cells. The synergistic effect of 25-hydroxyvitamin D3 with 1α,25-dihydroxyvitamin D3 in Cyp27b1?/? cells further demonstrates the agonistic action of 25-hydroxyvitamin D3 and suggests that a synergism between 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3 might be physiologically important. In conclusion, 25-hydroxyvitamin D3 is an agonistic vitamin D receptor ligand with gene regulatory and anti-proliferative properties.  相似文献   
107.

Background

Terpenoids are abundant in the foliage of Eucalyptus, providing the characteristic smell as well as being valuable economically and influencing ecological interactions. Quantitative and qualitative inter- and intra- specific variation of terpenes is common in eucalypts.

Results

The genome sequences of Eucalyptus grandis and E. globulus were mined for terpene synthase genes (TPS) and compared to other plant species. We investigated the relative expression of TPS in seven plant tissues and functionally characterized five TPS genes from E. grandis. Compared to other sequenced plant genomes, Eucalyptus grandis has the largest number of putative functional TPS genes of any sequenced plant. We discovered 113 and 106 putative functional TPS genes in E. grandis and E. globulus, respectively. All but one TPS from E. grandis were expressed in at least one of seven plant tissues examined. Genomic clusters of up to 20 genes were identified. Many TPS are expressed in tissues other than leaves which invites a re-evaluation of the function of terpenes in Eucalyptus.

Conclusions

Our data indicate that terpenes in Eucalyptus may play a wider role in biotic and abiotic interactions than previously thought. Tissue specific expression is common and the possibility of stress induction needs further investigation. Phylogenetic comparison of the two investigated Eucalyptus species gives insight about recent evolution of different clades within the TPS gene family. While the majority of TPS genes occur in orthologous pairs some clades show evidence of recent gene duplication, as well as loss of function.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1598-x) contains supplementary material, which is available to authorized users.  相似文献   
108.
A-kinase anchoring proteins (AKAPs) represent a family of structurally diverse proteins, all of which bind PKA. A member of this family is glycogen synthase kinase 3β (GSK3β) interaction protein (GSKIP). GSKIP interacts with PKA and also directly interacts with GSK3β. The physiological function of the GSKIP protein in vivo is unknown. We developed and characterized a conditional knock-out mouse model and found that GSKIP deficiency caused lethality at birth. Embryos obtained through Caesarean section at embryonic day 18.5 were cyanotic, suffered from respiratory distress, and failed to initiate breathing properly. Additionally, all GSKIP-deficient embryos showed an incomplete closure of the palatal shelves accompanied by a delay in ossification along the fusion area of secondary palatal bones. On the molecular level, GSKIP deficiency resulted in decreased phosphorylation of GSK3β at Ser-9 starting early in development (embryonic day 10.5), leading to enhanced GSK3β activity. At embryonic day 18.5, GSK3β activity decreased to levels close to that of wild type. Our findings reveal a novel, crucial role for GSKIP in the coordination of GSK3β signaling in palatal shelf fusion.  相似文献   
109.
The microbial communities of in situ reactor columns degrading benzene with sulfate as an electron acceptor were analyzed based on clone libraries and terminal restriction fragment length polymorphism fingerprinting of PCR-amplified 16S rRNA genes. The columns were filled with either lava granules or sand particles and percolated with groundwater from a benzene-contaminated aquifer. The predominant organisms colonizing the lava granules were related to Magnetobacterium sp., followed by a phylotype affiliated to the genera Cryptanaerobacter/Pelotomaculum and several Deltaproteobacteria. From the sand-filled columns, a stable benzene-degrading consortium was established in sand-filled laboratory microcosms under sulfate-reducing conditions. It was composed of Delta- and Epsilonproteobacteria, Clostridia, Chloroflexi, Actinobacteria and Bacteroidetes. The most prominent phylotype of the consortium was related to the genus Sulfurovum, followed by Desulfovibrio sp. and the Cryptanaerobacter/Pelotomaculum phylotype. The proportion of the latter was similar in both communities and significantly increased after repeated benzene-spiking. During cultivation on aromatic substrates other than benzene, the Cryptanaerobacter/Pelotomaculum phylotype was outcompeted by other community members. Hence, this organism appears to be specific for benzene as a growth substrate and might play a key role in benzene degradation in both communities. Based on the possible functions of the community members and thermodynamic calculations, a functional model for syntrophic benzene degradation under sulfate-reducing conditions is proposed.  相似文献   
110.
An increasing proportion of the Earth''s surface is illuminated at night. In aquatic ecosystems, artificial light at night (ALAN) may influence microbial communities living in the sediments. These communities are highly diverse and play an important role in the global carbon cycle. We combined field and laboratory experiments using sediments from an agricultural drainage system to examine how ALAN affects communities and alters carbon mineralization. Two identical light infrastructures were installed parallel to a drainage ditch before the start of the experiment. DNA metabarcoding indicated that both sediment communities were similar. After one was lit for five months (July–December 2012) we observed an increase in photoautotroph abundance (diatoms, Cyanobacteria) in ALAN-exposed sediments. In laboratory incubations mimicking summer and winter (six weeks each), communities in sediments that were exposed to ALAN for 1 year (July 2012–June 2013) showed less overall seasonal change compared with ALAN-naive sediments. Nocturnal community respiration was reduced in ALAN-exposed sediments. In long-term exposed summer-sediments, we observed a shift from negative to positive net ecosystem production. Our results indicate ALAN may alter sediment microbial communities over time, with implications for ecosystem-level functions. It may thus have the potential to transform inland waters to nocturnal carbon sinks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号