首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   339篇
  免费   12篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   6篇
  2016年   10篇
  2015年   4篇
  2014年   5篇
  2013年   18篇
  2012年   7篇
  2011年   16篇
  2010年   14篇
  2009年   9篇
  2008年   13篇
  2007年   18篇
  2006年   20篇
  2005年   7篇
  2004年   11篇
  2003年   18篇
  2002年   17篇
  2001年   12篇
  2000年   19篇
  1999年   10篇
  1998年   4篇
  1997年   2篇
  1994年   3篇
  1992年   2篇
  1991年   7篇
  1990年   6篇
  1989年   7篇
  1988年   8篇
  1987年   5篇
  1986年   6篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1979年   5篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1972年   2篇
  1971年   5篇
  1970年   2篇
  1969年   3篇
  1967年   5篇
  1965年   1篇
排序方式: 共有351条查询结果,搜索用时 46 毫秒
31.
Gene expression, protein synthesis, and activities of alternative oxidase (AOX), uncoupling proteins (UCP), adenine nucleotide translocator (ANT), and non-coupled NAD(P)H dehydrogenases (NDex, NDPex, and NDin) were studied in shoots of etiolated winter wheat (Triticum aestivum L.) seedlings after exposure to hardening low positive (2°C for 7 days) and freezing (?2°C for 2 days) temperatures. The cold hardening efficiently increased frost-resistance of the seedlings and decreased the generation of reactive oxygen species (ROS) during further cold shock. Functioning of mitochondrial energy-dissipating systems can represent a mechanism responsible for the decrease in ROS under these conditions. These systems are different in their response to the action of the hardening low positive and freezing temperatures. The functioning of the first system causes induction of AOX and UCP synthesis associated with an increase in electron transfer via AOX in the mitochondrial respiratory chain and also with an increase in the sensitivity of mitochondrial non-phosphorylating respiration to linoleic and palmitic acids. The increase in electron transfer via AOX upon exposure of seedlings to hardening freezing temperature is associated with retention of a high activity of NDex. It seems that NDex but not the NDPex and NDin can play an important role in maintaining the functional state of mitochondria in heterotrophic tissues of plants under the influence of freezing temperatures. The involvement of the mitochondrial energy-dissipating systems and their possible physiological role in the adaptation of winter crops to cold and frost are discussed.  相似文献   
32.
Small nucleolar RNAs (snoRNAs) and small Cajal body-specific RNAs (scaRNAs) are non-coding RNAs whose main function in eukaryotes is to guide the modification of nucleotides in ribosomal and spliceosomal small nuclear RNAs, respectively. Full-length sequences of Arabidopsis snoRNAs and scaRNAs have been obtained from cDNA libraries of capped and uncapped small RNAs using RNA from isolated nucleoli from Arabidopsis cell cultures. We have identified 31 novel snoRNA genes (9 box C/D and 22 box H/ACA) and 15 new variants of previously described snoRNAs. Three related capped snoRNAs with a distinct gene organization and structure were identified as orthologues of animal U13snoRNAs. In addition, eight of the novel genes had no complementarity to rRNAs or snRNAs and are therefore putative orphan snoRNAs potentially reflecting wider functions for these RNAs. The nucleolar localization of a number of the snoRNAs and the localization to nuclear bodies of two putative scaRNAs was confirmed by in situ hybridization. The majority of the novel snoRNA genes were found in new gene clusters or as part of previously described clusters. These results expand the repertoire of Arabidopsis snoRNAs to 188 snoRNA genes with 294 gene variants.  相似文献   
33.
34.
Three proteins, namely, the core protein C and envelope glycoproteins E1 and E2, are main structural proteins forming a hepatitis C virus (HCV) virion. The virus structure and assembly and the role of the structural proteins in virion morphogenesis remain unknown because of the lack of an efficient culture system for HCV to be grown in vitro. Highly efficient heterologous expression systems make it possible to obtain self-assembled, nonreplicating, genome-lacking particles that are morphologically similar to intact virions. Using recombinant baculoviruses expressing the HCV structural protein genes in insect cells, the individual HCV structural proteins were expressed to 25–35% of the total cell protein, and the CE1 and E1E2 heterodimers and HCV-like particles were obtained. It was demonstrated that the recombinant C, E1, and E2 proteins underwent posttranslational modification, the glycoproteins formed a noncovalent heterodimer, and HCV- like particles were located in endoplasmic reticulum membranes of infected cells. The formation of E1E2 dimers and HCV-like particles was used to study the effect of E1 glycosylation on the expression and processing of the coat proteins.  相似文献   
35.
36.
Phenolic acids and flavonoids were characterized by cyclic voltammetry and total antioxidant activity in the reaction with the ABTS cation radical. Anode peak voltages (Eap) and their pH dependences were determined for the studied phenolic acids and flavonoids. The Eap and Trolox equivalent antioxidant capacity (TEAC) values were found to correlate for polyphenols, which react with the ABTS cation radical in two steps. Correlation between the half-wave potential (E1/2) and TEAC was determined for electrochemically irreversible compounds. Mechanisms of the reaction of phenolics on the electrode involving one-and two-electron oxidation are proposed.  相似文献   
37.
Phenolic acids and flavonoids were characterized by cyclic voltammetry and total antioxidant activity in the reaction with the ABTS cation radical. Anode peak voltages (Eap) and their pH dependences were determined for the studied phenolic acids and flavonoids. The Eap and Trolox equivalent antioxidant capacity (TEAC) values were found to correlate for polyphenols, which react with the ABTS cation radical in two steps. Correlation between the half-wave potential (Ep/2) and TEAC was determined for electrochemically irreversible compounds. Mechanisms of the reaction of phenolics on the electrode involving one- and two-electron oxidation are proposed.  相似文献   
38.
39.
The histone H3 variant (CENH3) of centromeric nucleosomes is essential for kinetochore assembly and thus for chromosome segregation in eukaryotes. The mechanism(s) that determine centromere identity, assembly and maintenance of kinetochores are still poorly understood. Although the role of CENH3 during mitosis has been studied in several organisms, little is known about its meiotic function. We show that RNAi-mediated CENH3 knockdown in Arabidopsis thaliana caused dwarfism as the result of a reduced number of mitotic divisions. The remaining mitotic divisions appeared to be error-free. CENH3 RNAi transformants had reduced fertility because of frequently disturbed meiotic chromosome segregation. N-terminally truncated EYFP-CENH3(C) is deposited to and functional within Arabidopsis centromeres of mitotic chromosomes, but cannot be loaded onto centromeres of meiotic nuclei. Thus the N-terminal part is apparently required for CENH3 loading during meiosis. EYFP-CENH3(C) expression reduces the amount of endogenous CENH3, thus mimicking the effect of RNAi. The consequences of reduced endogenous CENH3 and lack of meiotic incorporation of EYFP-CENH3(C) are reduced fertility caused by insufficient CENH3 loading to the centromeres of meiotic chromosomes, subsequent lagging of chromosomes and formation of micronuclei.  相似文献   
40.
Single-cell analysis is essential for understanding the processes of cell differentiation and metabolic specialisation in rare cell types. The amount of single proteins in single cells can be as low as one copy per cell and is for most proteins in the attomole range or below; usually considered as insufficient for proteomic analysis. The development of modern mass spectrometers possessing increased sensitivity and mass accuracy in combination with nano-LC–MS/MS now enables the analysis of single-cell contents. In Arabidopsis thaliana, we have successfully identified nine unique proteins in a single-cell sample and 56 proteins from a pool of 15 single-cell samples from glucosinolate-rich S-cells by nanoLC–MS/MS proteomic analysis, thus establishing the proof-of-concept for true single-cell proteomic analysis. Dehydrin (ERD14_ARATH), two myrosinases (BGL37_ARATH and BGL38_ARATH), annexin (ANXD1_ARATH), vegetative storage proteins (VSP1_ARATH and VSP2_ARATH) and four proteins belonging to the S-adenosyl-l-methionine cycle (METE_ARATH, SAHH1_ARATH, METK4_ARATH and METK1/3_ARATH) with associated adenosine kinase (ADK1_ARATH), were amongst the proteins identified in these single-S-cell samples. Comparison of the functional groups of proteins identified in S-cells with epidermal/cortical cells and whole tissue provided a unique insight into the metabolism of S-cells. We conclude that S-cells are metabolically active and contain the machinery for de novo biosynthesis of methionine, a precursor for the most abundant glucosinolate glucoraphanine in these cells. Moreover, since abundant TGG2 and TGG1 peptides were consistently found in single-S-cell samples, previously shown to have high amounts of glucosinolates, we suggest that both myrosinases and glucosinolates can be localised in the same cells, but in separate subcellular compartments. The complex membrane structure of S-cells was reflected by the presence of a number of proteins involved in membrane maintenance and cellular organisation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号