首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   32篇
  2021年   2篇
  2017年   2篇
  2016年   5篇
  2015年   5篇
  2014年   4篇
  2013年   5篇
  2012年   6篇
  2011年   12篇
  2010年   5篇
  2009年   6篇
  2008年   7篇
  2007年   7篇
  2006年   4篇
  2005年   8篇
  2004年   7篇
  2003年   7篇
  2002年   6篇
  2001年   7篇
  2000年   3篇
  1999年   8篇
  1998年   6篇
  1996年   3篇
  1993年   2篇
  1992年   9篇
  1991年   7篇
  1990年   2篇
  1989年   9篇
  1988年   5篇
  1987年   7篇
  1986年   8篇
  1984年   12篇
  1983年   9篇
  1982年   3篇
  1981年   5篇
  1980年   6篇
  1979年   10篇
  1978年   12篇
  1977年   6篇
  1976年   3篇
  1975年   4篇
  1974年   4篇
  1972年   5篇
  1971年   4篇
  1969年   3篇
  1968年   2篇
  1967年   1篇
  1966年   4篇
  1925年   1篇
  1922年   2篇
  1914年   1篇
排序方式: 共有279条查询结果,搜索用时 15 毫秒
11.
12.
13.
Beta-galactoside-binding lectins were isolated from various calf tissues and from chicken hearts by affinity chromatography on asialofetuin-Sepharose, and were compared with respect to biochemical characteristics, binding properties, antigenic cross-reactivity, and cellular localization. The lectins are all thiol group-requiring, divalent cation-independent dimers, of apparent monomer mol wt 12,000 (calf lectins) or 13,000 (chicken lectin), and acidic pI. The calf lectins appear essentially identical by dodecyl sulfate-polyacrylamide gel electrophoresis, isoelectric focusing, amino acid composition, and radioimmunoassay, while the chicken lectin is distinctly different by these criteria. However, all of the lectins competed for the same binding sites on rabbit erythrocytes, and could be inhibited by the same saccharide haptens (notably lactose and thiodigalactoside). Immuno-fluorescence studies on several cultured cell lines revealed that the bovine and chicken lectins had primarily an intracellular cytoplasmic localization. The beta-galactoside-binding lectins of vertebrates appear to be species-specific rather than tissue-specific.  相似文献   
14.
Two mouse L cell variant lines (CL 3 and CL 6) selected for resistance to the toxic plant lectin ricin were restricted in their ability to replicate the two alphaviruses Sindbis virus and Semliki Forest virus. CL 3 cells have been shown to exhibit increased CMP-sialic acid:glycoprotein sialyltransferase and GM3 synthetase activities, whereas CL 6 cells have been shown to contain decreased UDPgalactose:glycoprotein galactosyltransferase and UDP-N-acetylglucosamine:glycoprotein N-acetylglucosaminyltransferase activities. The adsorption of Sindbis virus to CL 6 cells was considerably reduced, suggesting that the loss or inaccessibility of the receptors for Sindbis virus accounted for a major defect in virus production in these cells. In contrast, CL 3 synthesized Sindbis viral RNA and proteins but were unable to convert the precursor glycoprotein PE2 to the structural protein E2. The cleavage of PE2 to E2 was also blocked in both CL 3 and CL 6 cells infected with Semliki Forest virus.  相似文献   
15.
16.
Tunicamycin, an antibiotic that prevents glycosylation of glycoproteins by blocking the formation of N-acetylglucosamine-lipid intermediates, was used to study the importance of glycosylation for the secretion of immunoglobulins by mouse plasmacytoma lines that produce immunoglobulins of different classes. Biosynthetically labeled secreted and intracellular immunoglobulins were measured by immunoprecipitation assays. Tunicamycin, at a concentration of 0.5 mug/ml produced an 81% inhibition of IgM secretion by MOPC 104E plasma cells without significantly affecting the initial rate of synthesis of intracellular IgM. No increase in the intracellular degradation of nonglycosylated IgM could be demonstrated. Tunicamycin also produced a 64% average inhibition of IgA secretion by several mouse IgA-secreting plasmacytoma lines. In contrast, despite inhibiting the incorporation of D-[14C] glucosamine into newly synthesized IgG, tunicamycin only produced a 28% average inhibition of IgG secretion, which was only slightly more than the nonspecific inhibition of secretion of the normally nonglycosylated lambda2 light chains by variant MOPC 315 plasmacytomas. These data indicate that the extent of inhibition of immunoglobulin secretion produced by tunicamycin depends on the immunoglobulin class produced by the plasma cell.  相似文献   
17.
The biochemical abnormalities of I-cell disease (mucolipidosis II) and pseudo-Hurler polydystrophy (mucolipidosis III) can be explained by a deficiency of the enzyme UDP-N-acetylglucosamine:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase. We demonstrate here that obligate heterozygotes for these autosomal recessive diseases have intermediate levels of this enzymatic activity in homogenates of peripheral blood white cells and in extracts from cultured fibroblasts. This finding provides further evidence that the enzyme deficiency is the primary genetic defect in these diseases. In addition, the previous observation that obligate heterozygotes for mucolipidosis III have elevations of total serum beta-hexosaminidase outside the range of normal was confirmed. In studies of three pedigrees of patients with mucolipidosis III, these techniques were used to score individuals at risk for the carrier state.  相似文献   
18.
We have identified three developmentally regulated oligosaccharide-processing enzyme activities in Dictyostelium discoideum. Two different alpha-mannosidase activities present at extremely low levels in vegetative cells are expressed during development. The first of these activities (MI) rises sharply from 6 to 12 h of development whereas the second activity (MII) rises sharply from 12 to 18 h of development. MI acts on Man9GlcNAc, which it can degrade to Man5GlcNAc but is inactive toward p-nitrophenyl-alpha-D-mannoside (pnpMan). MII acts on pnpMan but not Man9GlcNAc. These activities are distinct from each other and from lysosomal alpha-mannosidase activity as demonstrated by pH optima, substrate specificity, sensitivity to inhibitors and divalent cations, developmental profiles, and solubility. The characteristics of these developmentally regulated alpha-mannosidase activities are similar to those of Golgi alpha-mannosidases I and II from higher eucaryotes, and they appear to catalyze the in vivo formation of processed asparagine-linked oligosaccharides by developed cells. In addition, developed cells have very low levels of a soluble alpha-mannosidase activity, which is the predominant activity in vegetative cells. This soluble vegetative alpha-mannosidase activity has properties that are reminiscent of the endoplasmic reticulum alpha-mannosidase from rat liver. The intersecting N-acetylglucosaminyltransferase activity that we have described recently in vegetative cells of D. discoideum (Sharkey, D. J., and Kornfeld, R. (1989) J. Biol. Chem. 264, 10411-10419) has a developmental profile that is distinct from that of either of the alpha-mannosidase activities. It has maximum activity at 6 h of development and decreases sharply to its minimum level by 12 h of development. The changes that occur in the levels of these three processing enzymes with development correlate well with the different arrays of asparagine-linked oligosaccharides found in early and late stages of development (Sharkey, D. J., and Kornfeld, R. (1991) J. Biol. Chem. 266, 18485-18497).  相似文献   
19.
The determinants on the cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor (CD-MPR) required for lysosomal enzyme sorting have been analyzed. Mouse L cells deficient in the mannose 6-phosphate/insulin-like growth factor-II receptor were transfected with normal bovine CD-MPR cDNA or cDNAs containing mutations in the 67-amino acid cytoplasmic tail and assayed for their ability to target the lysosomal enzyme cathepsin D to lysosomes. Cells expressing the wild-type bovine CD-MPR sorted 67 +/- 2% of newly synthesized cathepsin D compared with the base-line value of 47 +/- 1%. The presence of mannose 6-phosphate in the medium did not affect the efficiency of cathepsin D sorting, indicating that the routing of the ligand-receptor complex is completely intracellular. Mutant receptors with the carboxyl-terminal His-Leu-Leu-Pro-Met67 residues deleted or replaced with alanines sorted cathepsin D below the base-line value. A mutant receptor with the outermost Pro-Met residues replaced with alanines sorted cathepsin D better than the wild-type receptor, indicating that the essential residues for sorting are the His-Leu-Leu sequence. Disruption of a putative casein kinase II phosphorylation site at Ser57 had no detectable effect on sorting. The mutant receptor with the five-amino acid deletion was able to bind to a phosphopentamannose affinity column, proving that its ligand binding site was grossly intact. Resialylation experiments showed that this mutant receptor recycled from the cell surface to the Golgi at a rate similar to the normal CD-MPR, indicating that the defect in sorting is at the level of the Golgi.  相似文献   
20.
We have examined the phosphorylation of Asn-linked oligosaccharides introduced at seven novel sites on human cathepsin D to determine whether the location of an oligosaccharide on a lysosomal enzyme affects its ability to serve as a substrate for UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (phosphotransferase), the enzyme that catalyzes the initial step in the biosynthesis of mannose 6-phosphate residues. The glycosylation sites were introduced into the cathepsin D cDNA by site-directed mutagenesis and were selected to be widely distributed over the surface of the molecule. When the constructs were expressed in Xenopus oocytes, the oligosaccharides at each glycosylation site were phosphorylated at levels considerably above background (19-70% phosphorylation versus < 0.4% for the secretory protein glycopepsinogen). However, oligosaccharides located closer to the essential components of the phosphotransferase recognition domain (lysine 203 and amino acids 265-292) were phosphorylated better than oligosaccharides located further away. Similar results were obtained for oligosaccharides at homologous sites on a pepsinogen/cathepsin D chimera containing only lysine 203 and residues 265-319 of cathepsin D, although the absolute levels of phosphorylation were lower. These results demonstrate that there is considerable flexibility in the placement of glycosylation sites on cathepsin D in terms of the ability of the oligosaccharides to serve as substrates for phosphotransferase, although oligosaccharides located closer to the phosphotransferase recognition determinant are preferentially phosphorylated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号