首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   450篇
  免费   75篇
  国内免费   1篇
  2021年   9篇
  2018年   8篇
  2015年   9篇
  2014年   7篇
  2013年   11篇
  2012年   12篇
  2011年   9篇
  2010年   9篇
  2009年   11篇
  2008年   13篇
  2007年   9篇
  2006年   9篇
  2005年   9篇
  2004年   8篇
  2003年   12篇
  2002年   6篇
  2001年   11篇
  2000年   15篇
  1999年   18篇
  1998年   11篇
  1996年   5篇
  1995年   6篇
  1994年   5篇
  1993年   5篇
  1992年   17篇
  1991年   10篇
  1990年   14篇
  1989年   13篇
  1988年   23篇
  1987年   16篇
  1986年   8篇
  1985年   13篇
  1984年   5篇
  1983年   9篇
  1982年   9篇
  1981年   12篇
  1980年   5篇
  1979年   6篇
  1978年   10篇
  1977年   7篇
  1975年   5篇
  1974年   8篇
  1973年   5篇
  1972年   11篇
  1971年   10篇
  1970年   12篇
  1969年   15篇
  1968年   9篇
  1967年   7篇
  1966年   7篇
排序方式: 共有526条查询结果,搜索用时 578 毫秒
491.
492.
493.
494.
495.
Procedures are described for the selection of Escherichia coli mutants that constitutively take up and phosphorylate fructose, and convert it to fructose 1,6-bisphosphate. The phenotype of such mutants is described. The altered regulatory gene, fruC, is highly co-transducible with leu and other markers located at min 2 on the genome. In merozygotes, fruC+ is dominant to fruC. Mutants can be readily isolated that are fruC at 42 degrees C but fruC+ at 30 degrees C; moreover, the integration of a Tn10 transposon in the genome at min 2 converts fruC+ strains to fruC. It is therefore likely that the fruC+ regulatory gene specifies a repressor protein.  相似文献   
496.
The gene encoding a major exopolyphosphatase (scPPX1) in Saccharomyces cerevisiae (H. Wurst and A. Kornberg, J. Biol. Chem. 269:10996-11001, 1994) has been isolated from a genomic library. The gene, located at 57 kbp from the end of the right arm of chromosome VIII, encodes a protein of 396 amino acids. Overexpression in Escherichia coli allowed the ready purification of a recombinant form of the enzyme. Disruption of the gene did not affect the growth rate of S. cerevisiae. Lysates from the mutants displayed considerably lower exopolyphosphatase activity than the wild type. The enzyme is located in the cytosol, whereas the vast accumulation of polyphosphate (polyP) of the yeast is in the vacuole. Disruption of PPX1 in strains with and without deficiencies in vacuolar proteases allowed the identification of exopolyphosphatase activity in the vacuole. This residual activity was strongly reduced in the absence of vacuolar proteases, indicating a dependence on proteolytic activation. A 50-fold-lower protease-independent activity could be distinguished from this protease-dependent activity by different patterns of expression during growth and activation by arginine. With regard to the levels of polyP in various mutants, those deficient in vacuolar ATPase retain less than 1% of the cellular polyP, a loss that is not offset by additional mutations that eliminate the cytosolic exopolyphosphatase and the vacuolar polyphosphatases dependent on vacuolar protease processing.  相似文献   
497.
Dysregulation of collagen production and secretion contributes to aging and tissue fibrosis of major organs. How procollagen proteins in the endoplasmic reticulum (ER) route as specialized cargos for secretion remains to be fully elucidated. Here, we report that TMEM39, an ER-localized transmembrane protein, regulates production and secretory cargo trafficking of procollagen. We identify the C. elegans ortholog TMEM-39 from an unbiased RNAi screen and show that deficiency of tmem-39 leads to striking defects in cuticle collagen production and constitutively high ER stress response. RNAi knockdown of the tmem-39 ortholog in Drosophila causes similar defects in collagen secretion from fat body cells. The cytosolic domain of human TMEM39A binds to Sec23A, a vesicle coat protein that drives collagen secretion and vesicular trafficking. TMEM-39 regulation of collagen secretion is independent of ER stress response and autophagy. We propose that the roles of TMEM-39 in collagen secretion and ER homeostasis are likely evolutionarily conserved.  相似文献   
498.
499.
500.
Ferns and lycophytes have remarkably large genomes. However, little is known about how their genome size evolved in fern lineages. To explore the origins and evolution of chromosome numbers and genome size in ferns, we used flow cytometry to measure the genomes of 240 species (255 samples) of extant ferns and lycophytes comprising 27 families and 72 genera, of which 228 species (242 samples) represent new reports. We analyzed correlations among genome size, spore size, chromosomal features, phylogeny, and habitat type preference within a phylogenetic framework. We also applied ANOVA and multinomial logistic regression analysis to preference of habitat type and genome size. Using the phylogeny, we conducted ancestral character reconstruction for habitat types and tested whether genome size changes simultaneously with shifts in habitat preference. We found that 2C values had weak phylogenetic signal, whereas the base number of chromosomes (x) had a strong phylogenetic signal. Furthermore, our analyses revealed a positive correlation between genome size and chromosome traits, indicating that the base number of chromosomes (x), chromosome size, and polyploidization may be primary contributors to genome expansion in ferns and lycophytes. Genome sizes in different habitat types varied significantly and were significantly correlated with habitat types; specifically, multinomial logistic regression indicated that species with larger 2C values were more likely to be epiphytes. Terrestrial habitat is inferred to be ancestral for both extant ferns and lycophytes, whereas transitions to other habitat types occurred as the major clades emerged. Shifts in habitat types appear be followed by periods of genomic stability. Based on these results, we inferred that habitat type changes and multiple whole-genome duplications have contributed to the formation of large genomes of ferns and their allies during their evolutionary history.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号