首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5873篇
  免费   409篇
  国内免费   9篇
  6291篇
  2023年   19篇
  2022年   53篇
  2021年   115篇
  2020年   60篇
  2019年   98篇
  2018年   136篇
  2017年   113篇
  2016年   134篇
  2015年   257篇
  2014年   251篇
  2013年   375篇
  2012年   462篇
  2011年   504篇
  2010年   288篇
  2009年   261篇
  2008年   408篇
  2007年   396篇
  2006年   406篇
  2005年   350篇
  2004年   332篇
  2003年   304篇
  2002年   300篇
  2001年   44篇
  2000年   39篇
  1999年   61篇
  1998年   96篇
  1997年   30篇
  1996年   49篇
  1995年   36篇
  1994年   31篇
  1993年   30篇
  1992年   30篇
  1991年   19篇
  1990年   19篇
  1989年   13篇
  1988年   10篇
  1987年   5篇
  1986年   9篇
  1985年   9篇
  1984年   12篇
  1983年   7篇
  1982年   22篇
  1981年   12篇
  1980年   10篇
  1979年   6篇
  1978年   6篇
  1977年   9篇
  1976年   7篇
  1975年   6篇
  1974年   7篇
排序方式: 共有6291条查询结果,搜索用时 15 毫秒
891.
892.
A limited decrease in mitochondrial membrane potential can be beneficial for cells, especially under some pathological conditions, suggesting that mild uncouplers (protonophores) causing such an effect are promising candidates for therapeutic uses. The great majority of protonophores are weak acids capable of permeating across membranes in their neutral and anionic forms. In the present study, protonophorous activity of a series of derivatives of cationic rhodamine 19, including dodecylrhodamine (C(12)R1) and its conjugate with plastoquinone (SkQR1), was revealed using a variety of assays. Derivatives of rhodamine B, lacking dissociable protons, showed no protonophorous properties. In planar bilayer lipid membranes, separating two compartments differing in pH, diffusion potential of H(+) ions was generated in the presence of C(12)R1 and SkQR1. These compounds induced pH equilibration in liposomes loaded with the pH probe pyranine. C(12)R1 and SkQR1 partially stimulated respiration of rat liver mitochondria in State 4 and decreased their membrane potential. Also, C(12)R1 partially stimulated respiration of yeast cells but, unlike the anionic protonophore FCCP, did not suppress their growth. Loss of function of mitochondrial DNA in yeast (grande-petite transformation) is known to cause a major decrease in the mitochondrial membrane potential. We found that petite yeast cells are relatively more sensitive to the anionic uncouplers than to C(12)R1 compared with grande cells. Together, our data suggest that rhodamine 19-based cationic protonophores are self-limiting; their uncoupling activity is maximal at high membrane potential, but the activity decreases membrane potentials, which causes partial efflux of the uncouplers from mitochondria and, hence, prevents further membrane potential decrease.  相似文献   
893.
A series of novel sodium ion-sensitive fluorescent reagents suitable for biological applications is described. The chelator nitrogen atom substituents affect the selectivity and affinity of cation binding, while the nature of the fluorophore determines the type of fluorescent response to metal ion chelation.  相似文献   
894.
895.
Two novel 21-residue antimicrobial peptides, arenicin-1 and arenicin-2, exhibiting activity against Gram-positive and Gram-negative bacteria and fungi, were purified from coelomocytes of marine polychaeta Arenicola marina (lugworm) by preparative gel electrophoresis and RP-HPLC. Molecular masses (2758.3 and 2772.3 Da) and complete amino acid sequences (RWCVYAYVRVRGVLVRYRRCW and RWCVYAYVRIRGVLVRYRRCW) were determined for each isoform. Each arenicin has one disulfide bond (Cys3-Cys20). The total RNA was isolated from the lugworm coelomocytes, RT-PCR and cloning were performed, and cDNA was sequenced. A 202-residue preproarenicin contains a putative signal peptide (25 amino acids) and a long prodomain. Arenicins have no structure similarity to any previously identified antimicrobial peptides.  相似文献   
896.
897.
898.
The recruitment of DNA ligase I to replication foci and the efficient joining of Okazaki fragments is dependent on the interaction between DNA ligase I and proliferating cell nuclear antigen (PCNA). Although the PCNA sliding clamp tethers DNA ligase I to nicked duplex DNA circles, the interaction does not enhance DNA joining. This suggests that other factors may be involved in the joining of Okazaki fragments. In this study, we describe an association between replication factor C (RFC), the clamp loader, and DNA ligase I in human cell extracts. Subsequently, we demonstrate that there is a direct physical interaction between these proteins that involves both the N- and C-terminal domains of DNA ligase I, the N terminus of the large RFC subunit p140, and the p36 and p38 subunits of RFC. Although RFC inhibited DNA joining by DNA ligase I, the addition of PCNA alleviated inhibition by RFC. Notably, the effect of PCNA on ligation was dependent on the PCNA-binding site of DNA ligase I. Together, these results provide a molecular explanation for the key in vivo role of the DNA ligase I/PCNA interaction and suggest that the joining of Okazaki fragments is coordinated by pairwise interactions among RFC, PCNA, and DNA ligase I.  相似文献   
899.
900.
Human carbonyl reductases 1 and 3 (CBR1 and CBR3) are monomeric NADPH-dependent enzymes of the short-chain dehydrogenase/reductase superfamily. Despite 72% identity in primary structure they exhibit substantial differences in substrate specificity. Recently, the endogenous low molecular weight S-nitrosothiol S-nitrosoglutathione (GSNO) has been added to the broad substrate spectrum of CBR1. The current study initially addressed whether CBR3 could equally reduce GSNO which was not the case. Neither the introduction of residues which contribute to glutathione binding in CBR1, i.e. K106Q and S97V/D98A, nor the exchange C143S, which prevents a theoretical disulfide bond with C227 in CBR3, could engender activity towards GSNO. However, exchanging amino acids 236-244 in CBR3 to correspond to CBR1 was sufficient to engender catalytic activity towards GSNO. Catalytic efficiency was further improved by the exchanges Q142M, C143S, P230W and H270S. Hence, the same residues previously reported as important for reduction of carbonyl compounds appear to be key to CBR1-mediated reduction of GSNO. Furthermore, for CBR1-mediated reduction of GSNO, considerable substrate inhibition at concentrations >5 K(m) was observed. Treatment of CBR1 with GSNO followed by removal of low molecular weight compounds decreased the GSNO reducing activity, suggesting a covalent modification. Treatment with dithiothreitol, but not with ascorbic acid, could rescue the activity, indicating S-glutathionylation rather than S-nitrosation as the underlying mechanism. As C227 has previously been identified as the reactive cysteine in CBR1, the variant CBR1 C227S was generated, which, in comparison to the wild-type protein, displayed a similar k(cat), but a 30-fold higher K(m), and did not show substrate inhibition. Collectively, the results clearly argue for a physiological role of CBR1, but not for CBR3, in GSNO reduction and thus ultimately in regulation of NO signaling. Furthermore, at higher concentrations, GSNO appears to work as a suicide inhibitor for CBR1, probably through glutathionylation of C227.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号