首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3627篇
  免费   193篇
  3820篇
  2023年   10篇
  2022年   21篇
  2021年   57篇
  2020年   24篇
  2019年   21篇
  2018年   56篇
  2017年   46篇
  2016年   70篇
  2015年   140篇
  2014年   162篇
  2013年   236篇
  2012年   261篇
  2011年   272篇
  2010年   156篇
  2009年   161篇
  2008年   245篇
  2007年   270篇
  2006年   241篇
  2005年   213篇
  2004年   227篇
  2003年   231篇
  2002年   225篇
  2001年   25篇
  2000年   32篇
  1999年   34篇
  1998年   40篇
  1997年   37篇
  1996年   27篇
  1995年   35篇
  1994年   23篇
  1993年   22篇
  1992年   27篇
  1991年   19篇
  1990年   33篇
  1989年   18篇
  1988年   12篇
  1987年   9篇
  1986年   6篇
  1985年   12篇
  1984年   12篇
  1983年   7篇
  1982年   8篇
  1981年   12篇
  1980年   5篇
  1979年   2篇
  1975年   3篇
  1974年   4篇
  1973年   2篇
  1959年   1篇
  1958年   2篇
排序方式: 共有3820条查询结果,搜索用时 15 毫秒
51.
Dihydrosphingosine C4 hydroxylase is a key enzyme in the biosynthesis of phytosphingosine, a major constituent of sphingolipids in plants and yeasts. The rice genome contains five homologue genes for dihydrosphingosine C4 hydroxylase, DSH1-DSH5, whose gene products show high degrees of homology to the yeast counterpart, SUR2. Among them, expression of DSH1, DSH2 and DSH4 was detected, and DSH1 and DSH4 complement the yeast sur2 mutation. The DSH1 gene was specifically and abundantly expressed in vascular bundles and apical meristems. In particular, very strong expression was detected in the stigmas of flowers. Repression of DSH1 expression by the antisense gene or RNA interference (RNAi) resulted in a severe reduction of fertility. In the transformants in which DSH1 expression was suppressed, significantly increased expression of DSH2 was found in leaves but not in pistils, suggesting that there was tissue-specific correlation between DSH1 and DSH2 expression. Our results indicate that the product of DSH1 may be involved in plant viability or reproductive processes, and that the phenotype of sterility is apparently caused by loss of function of DSH1 in the stigma. It is also suggested that there is a complex mechanism controlling the tissue-specific expression of the DSH1 gene.  相似文献   
52.
53.
The cDNA coding for Penicillium purpurogenum α-galactosidase (αGal) was cloned and sequenced. The deduced amino acid sequence of the α-Gal cDNA showed that the mature enzyme consisted of 419 amino acid residues with a molecular mass of 46,334 Da. The derived amino acid sequence of the enzyme showed similarity to eukaryotic αGals from plants, animals, yeasts, and filamentous fungi. The highest similarity observed (57% identity) was to Trichoderma reesei AGLI. The cDNA was expressed in Saccharomyces cerevisiae under the control of the yeast GAL10 promoter. Almost all of the enzyme produced was secreted into the culture medium, and the expression level reached was approximately 0.2 g/liter. The recombinant enzyme purified to homogeneity was highly glycosylated, showed slightly higher specific activity, and exhibited properties almost identical to those of the native enzyme from P. purpurogenum in terms of the N-terminal amino acid sequence, thermoactivity, pH profile, and mode of action on galacto-oligosaccharides.α-Galactosidase (αGal) (EC 3.2.1.22) is of particular interest in view of its biotechnological applications. αGal from coffee beans demonstrates a relatively broad substrate specificity, cleaving a variety of terminal α-galactosyl residues, including blood group B antigens on the erythrocyte surface. Treatment of type B erythrocytes with coffee bean αGal results in specific removal of the terminal α-galactosyl residues, thus generating serological type O erythrocytes (8). Cyamopsis tetragonoloba (guar) αGal effectively liberates the α-galactosyl residue of galactomannan. Removal of a quantitative proportion of galactose moieties from guar gum by αGal improves the gelling properties of the polysaccharide and makes them comparable to those of locust bean gum (18). In the sugar beet industry, αGal has been used to increase the sucrose yield by eliminating raffinose, which prevents normal crystallization of beet sugar (28). Raffinose and stachyose in beans are known to cause flatulence. αGal has the potential to alleviate these symptoms, for instance, in the treatment of soybean milk (16).αGals are also known to occur widely in microorganisms, plants, and animals, and some of them have been purified and characterized (5). Dey et al. showed that αGals are classified into two groups based on their substrate specificity. One group is specific for low-Mr α-galactosides such as pNPGal (p-nitrophenyl-α-d-galactopyranoside), melibiose, and the raffinose family of oligosaccharides. The other group of αGals acts on galactomannans and also hydrolyzes low-Mr substrates to various extents (6).We have studied the substrate specificity of αGals by using galactomanno-oligosaccharides such as Gal3Man3 (63-mono-α-d-galactopyranosyl-β-1,4-mannotriose) and Gal3Man4 (63-mono-α-d-galactopyranosyl-β-1,4-mannotetraose). The structures of these galactomanno-oligosaccharides are shown in Fig. Fig.1.1. Mortierella vinacea αGal I (11) and yeast αGals (29) are specific for the Gal3Man3 having an α-galactosyl residue (designated the terminal α-galactosyl residue) attached to the O-6 position of the nonreducing end mannose of β-1,4-mannotriose. On the other hand, Aspergillus niger 5-16 αGal (12) and Penicillium purpurogenum αGal (25) show a preference for the Gal3Man4 having an α-galactosyl residue (designated the stubbed α-galactosyl residue) attached to the O-6 position of the third mannose from the reducing end of β-1,4-mannotetraose. The M. vinacea αGal II (26) acts on both substrates to almost equal extents. The difference in specificity may be ascribed to the tertiary structures of these enzymes. Open in a separate windowFIG. 1Structures of galactomanno-oligosaccharides.Genes encoding αGals have been cloned from various sources, including humans (3), plants (20, 32), yeasts (27), filamentous fungi (4, 17, 24, 26), and bacteria (1, 2, 15). αGals from eukaryotes show a considerable degree of similarity and are grouped into family 27 (10).Here we describe the cloning of P. purpurogenum αGal cDNA, its expression in Saccharomyces cerevisiae, and the purification and characterization of the recombinant enzyme.  相似文献   
54.
An accelerated weight gain is noted in the heart of Ca-deficient, hypertensive chick embryos maintained in a shell-less culture in vitro. We previously observed that the Ca handling property of cardiomyocytes isolated from the shell-less embryo is altered, i.e., faster Ca uptake, suggesting a requirement for adequate Ca supply and/or proper Ca handling in embryonic cardiac development. In this study, we have examined the function of Ca on cardiomyocytes by analyzing the effects of (1) various Ca concentration in the culture medium (NCa, 1.8 mmol/L; HCa, 2.8 mmol/L; LCa, 0.9 mmol/L), and (2) various modulators of Ca handling on cell proliferation and phenotype regulation in chick embryonic cardiomyocytes. The analytical parameters included cell number, DNA content, expression of cell cycle–specific and cardiomyocyte-specific proteins, and creatine phosphokinase (CPK) and lactate dehydrogenase (LDH) enzyme activities. Cell number and total DNA were significantly larger (P < 0.01) in LCa cultures compared with those in NCa. The level of LDH was elevated (P < 0.01), but that of CPK was lowered in LCa. Expression of the G1-S–specific protein PCNA was raised, but that of the contractile proteins myosin and tropomyosin was substantially suppressed in LCa; in HCa, the cells did not proliferate as well, whereas the level of contractile proteins was higher. Thapsigargin, a sarcoplasmic reticulum (SR)-specific, Ca-ATPase inhibitor, simulated the effects of LCa by enhancing cell proliferation and lowering the expression of tropomyosin. These results suggest that culturing in low Ca concentration and inhibition of SR Ca pumping enhance myocardial cell proliferation and suppress sarcomeric protein expression, perhaps by inducing cellular de-differentiation. The in vitro effects of medium Ca concentration and Ca handling modulators on cardiomyocytes also suggest that the in vivo cardiomegaly of the SL embryos is a direct result of Ca-deficiency, and that Ca is important in the phenotype regulation of cardiomyocytes. J. Cell. Physiol. 177:289–298, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
55.
Insects are unable to synthesize sterols and require exogenous sterol sources for their normal development and reproduction. A few exceptions are insects associated with symbiotic yeasts or fungi. We analyzed sterols by GC-MS in two anobiid beetles (Lasioderma serricorne and Stegobium paniceum), their intracellular yeast-like symbiotes (YLS), and their diets in order to clarify the sterols synthesized by YLS and the metabolic pathways of the sterols in the beetles. Several C(27), C2(8), and C(29) saturated and unsaturated sterols were identified; the predominant sterols were cholesterol and 7-dehydrocholesterol in the anobiid beetles and ergosterol in the YLS. Most sterols detected in YLS were those known in the late pathway of the ergosterol biosynthesis in yeasts and most of the sterols in the beetles appear to be intermediate metabolites from YLS sterols to 7-dehydrocholesterol. The anobiid beetles appear to use ergosterol and 5-dihydroergosterol as sources for 7-dehydrocholesterol.  相似文献   
56.
The Cd(II) complex of a peptide, Z-Cys-Ala-Pro-His-OMe was prepared and characterized by absorption, CD, 1H-, 13C-, and 113Cd-nmr, and nuclear Overhauser effect spectroscopy (NOESY) spectra to show the coordination of cysteine thiolate and histidine imizazole to Cd(II) ion. The NOESY spectra in dimethyl formamide showed that the cysteine residue was in proximity to the histidine residue. These results reveal the dictation of Z-Cys-Ala-Pro-His-OMe to Cd(II) ion in solution. Temperature-dependent dissociation equilibrium of histidine imidazole in solution was observed in this complex. Structural features of the chelating peptide are discussed. © 1995 John Wiley & Sons, Inc.  相似文献   
57.
The expression of secretogranin III (SgIII) in chicken endocrine cells has not been investigated. There is limited data available for the immunohistochemical localization of SgIII in the brain, pituitary, and pancreatic islets of humans and rodents. In the present study, we used immunoblotting to reveal the similarities between the expression patterns of SgIII in the common endocrine glands of chickens and rats. The protein–protein interactions between SgIII and chromogranin A (CgA) mediate the sorting of CgA/prohormone core aggregates to the secretory granule membrane. We examined these interactions using co-immunoprecipitation in chicken endocrine tissues. Using immunohistochemistry, we also examined the expression of SgIII in a wide range of chicken endocrine glands and gastrointestinal endocrine cells (GECs). SgIII was expressed in the pituitary, pineal, adrenal (medullary parts), parathyroid, and ultimobranchial glands, but not in the thyroid gland. It was also expressed in GECs of the stomach (proventriculus and gizzard), small and large intestines, and pancreatic islet cells. These SgIII-expressing cells co-expressed serotonin, somatostatin, gastric inhibitory polypeptide, glucagon-like peptide-1, glucagon, or insulin. These results suggest that SgIII is expressed in the endocrine cells that secrete peptide hormones, which mature via the intragranular enzymatic processing of prohormones and physiologically active amines in chickens.  相似文献   
58.
59.
We identified and characterized the gene encoding a new eukaryotic-type protein kinase from Streptomyces coelicolor A3(2) M145. PkaD, consisting of 598 amino acid residues, contained the catalytic domain of eukaryotic protein kinases in the N-terminal region. A hydrophobicity plot indicated the presence of a putative transmembrane spanning sequence downstream of the catalytic domain, suggesting that PkaD is a transmembrane protein kinase. The recombinant PkaD was found to be phosphorylated at the threonine and tyrosine residues. In S. coelicolor A3(2), pkaD was transcribed as a monocistronic mRNA, and it was expressed constitutively throughout the life cycle. Disruption of chromosomal pkaD resulted in a significant loss of actinorhodin production. This result implies the involvement of pkaD in the regulation of secondary metabolism.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号