首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   4篇
  2022年   1篇
  2021年   2篇
  2019年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2004年   1篇
  2003年   3篇
  2000年   1篇
  1999年   2篇
  1992年   1篇
  1988年   1篇
  1971年   1篇
排序方式: 共有38条查询结果,搜索用时 265 毫秒
11.

Background  

Bacteriophages can be successfully applied to treat infections caused by antibiotic-resistant bacteria. Until now no attempts have been undertaken to treat infections in immunosuppressed patients with phages. In this work we investigated the prophylactic efficacy of specific bacteriophages in CBA mice treated with cyclophosphamide (CP) and infected with Staphylococcus aureus.  相似文献   
12.
Transforming growth factor-β1 (TGF-β1) activates Rac1 GTPase in mouse transformed keratinocytes. Expression of a constitutively active Q61LRac1 mutant induced an epithelial to mesenchymal transition (EMT) linked to stimulation of cell migration and invasion. On the contrary, expression of a dominant-negative N17TRac1 abolished TGF-β1-induced cell scattering, migration and invasion. Moreover, Q61LRac1 enhanced metalloproteinase-9 (MMP9) production to levels comparable to those induced by TGF-β1, while N17TRac1 was inhibitory. TGF-β1-mediated EMT involves the expression of the E-cadherin repressor Snail1, regulated by the Rac1 and mitogen-activated protein kinase (MAPK) pathways. Furthermore, MMP9 production was MAPK-dependent, as the MEK inhibitor PD98059 decreased TGF-β1-induced MMP9 expression and secretion in Q61LRac1 expressing cells. We propose that regulation of TGF-β1-mediated plasticity of transformed keratinocytes requires the cooperation between the Rac1 and MAPK signalling pathways.  相似文献   
13.
14.
15.
Astroviruses are a leading cause of infantile viral gastroenteritis worldwide. Very little is known about the mechanisms of astrovirus-induced diarrhea. One reason for this is the lack of a small-animal model. Recently, we isolated a novel strain of astrovirus (TAstV-2) from turkeys with the emerging infectious disease poult enteritis mortality syndrome. In the present studies, we demonstrate that TAstV-2 causes growth depression, decreased thymus size, and enteric infection in infected turkeys. Infectious TAstV-2 can be recovered from multiple tissues, including the blood, suggesting that there is a viremic stage during infection. In spite of the severe diarrhea, histopathologic changes in the intestine were mild and there was a surprising lack of inflammation. This may be due to the increased activation of the potent immunosuppressive cytokine transforming growth factor beta during astrovirus infection. These studies suggest that the turkey will be a useful small-animal model with which to study astrovirus pathogenesis and immunity.  相似文献   
16.
Astroviruses are known to cause enteric disease in several animal species, including turkeys. However, only human astroviruses have been well characterized at the nucleotide level. Herein we report the nucleotide sequence, genomic organization, and predicted amino acid sequence of a turkey astrovirus isolated from poults with an emerging enteric disease.  相似文献   
17.
Monosodium glutamate (MSG), the sodium salt of glutamate, is commonly used as a flavor enhancer in modern nutrition. Recent studies have shown the existence of glutamate receptors on lymphocytes, thymocytes and thymic stromal cells. In this study, we evaluated the in vitro effect of different MSG concentrations on rat thymocyte apoptosis and expression of two apoptosis-related proteins, Bcl-2 and Bax. Rat thymocytes, obtained from male Wistar rats, were exposed to increasing concentrations of MSG (ranging from 1 mM to 100 mM) for 24 h. Apoptosis was detected using the Annexin V-FITC/PI apoptosis detection kit and cells were analyzed using a flow cytometer. Expression of Bcl-2 and Bax proteins were determined with flow cytometry using respective monoclonal antibodies. Exposure to MSG resulted in a dose-dependent decrease in cell survival (as determined by trypan blue exclusion method). Annexin V-FITC/PI also confirmed that MSG increased, in a dose-dependent manner, apoptotic cell death in rat thymocyte cultures. MSG treatment induced downregulation of Bcl-2 protein, while Bax protein levels were not significantly changed. Our data showed that MSG significantly modulates thymocyte apoptosis rate in cultures. The temporal profile of Bcl-2 and Bax expression after MSG treatment suggests that downregulation of Bcl-2 protein and the resulting change of Bcl-2/Bax protein ratio may be an important event in thymocyte apoptosis triggered by MSG.  相似文献   
18.
Rational replacement of the alkyne linker of mGluR5 antagonist MPEP gave 7-arylquinolines. SAR optimization gave an orally active compound with high affinity for the MPEP binding site.  相似文献   
19.
The development of multicellular organisms, as well as maintenance of organ architecture and function, requires robust regulation of cell fates. This is in part achieved by conserved signaling pathways through which cells process extracellular information and translate this information into changes in proliferation, differentiation, migration, and cell shape. Gene deletion studies in higher eukaryotes have assigned critical roles for components of the extracellular matrix (ECM) and their cellular receptors in a vast number of developmental processes, indicating that a large proportion of this signaling is regulated by cell-ECM interactions. In addition, genetic alterations in components of this signaling axis play causative roles in several human diseases. This review will discuss what genetic analyses in mice and lower organisms have taught us about adhesion signaling in development and disease.Almost all cells in multicellular organisms are surrounded by a three-dimensional organized meshwork of macromolecules that constitute the extracellular matrix (ECM). The ECM is a dynamic structure that is generated and constantly remodeled by cells that secrete and manipulate its components into a precise configuration. It functions as a structural framework that provides cells with positional and environmental information, but also forms specialized structures such as cartilage, tendons, basement membranes (BM), bone, and teeth. In addition to its structural properties, the ECM acts as a signaling platform that regulates a large number of cellular functions. It is capable of binding growth factors, chemokines, and cytokines thereby modulating their bioavailability and activity. On the other hand, the ECM is recognized by multiple cell surface receptors that transmit information from the extracellular environment by propagating intracellular signals (for a review, see Hynes 2009).The major cell surface receptors that recognize and assemble the ECM are integrins. Integrins are heterodimeric transmembrane proteins composed of α and β subunits. Eighteen α subunits and eight β subunits can assemble in 24 different combinations with overlapping substrate specificity and cell-type-specific expression patterns (Hynes 2002; Humphries et al. 2006). This, together with the ability of different heterodimers to assemble specific intracellular signaling complexes, provides multiple layers of signaling specificity to these receptors. Conversely, the integrin expression profile of a given cell type determines which ECM components it can bind. Signals arising from integrins regulate virtually all aspects of cell behavior, including cell migration, survival, cell cycle progression, and differentiation.Genetics has proven to be a powerful tool to dissect the functions of ECM–cell interactions in complex organisms. To date, all of the integrin subunits and their major ligands have been deleted in mice. Given the large variety of cellular processes regulated by adhesion signaling, it is not surprising that a significant subset of these proteins has proven to be essential for embryonic development and/or tissue maintenance. However, in addition to underlining the importance of cell-ECM interactions in development, genetic studies also revealed critical roles for tissue- and cell-type-specific modes of adhesion signaling and provided important insights into human disease.  相似文献   
20.
The aim of this study was to evaluate the immunoregulatory effects of recombinant human lactoferrin (rhLF) in two in vitro models: (1) the secondary humoral immune response to sheep erythrocytes (SRBC); and (2) the mixed lymphocyte reaction (MLR). We compared the non-sialylated glycoform of rhLF as expressed by glycoengineered Pichia pastoris with one that was further chemically sialylated. In an earlier study, we showed that sialylated rhLF could reverse methotrexate-induced suppression of the secondary immune response of mouse splenocytes to SRBC, and that the phenomenon is dependent on the interaction of lactoferrin (LF) with sialoadhesin (CD169). We found that the immunorestorative activity of sialylated rhLF is also dependent on its interaction with the CD22 antigen, a member of the immunoglobulin superfamily that is expressed by B lymphocytes. We also demonstrated that only sialylated rhLF was able to inhibit the MLR reaction. MLR was inhibited by bovine lactoferrin (bLF), a glycoform that has a more complex glycan structure. Desialylated bLF and lactoferricin, a bLF-derived peptide devoid of carbohydrates, did not express such inhibitory activity. We showed that the interaction of LF with sialic acid receptors is essential for at least some of the immunoregulatory activity of this glycoprotein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号