首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  13篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有13条查询结果,搜索用时 0 毫秒
11.
The factors affecting the callus formation and regeneration capacity of leaf explants of four genotypes of the genus Triticum, viz. T. aestivum, cvs. Taezhnaya and Chinese Spring; T. durum, cv. Kollektivnaya; and T. persicum, were investigated. The process of callus formation did not depend on the explant genotype. Apical leaf segments were characterized by the lowest capacity of callus formation. In contrast, the rate of plant regeneration was correlated with the genotype and the explant developmental stage. The highest number of regenerants was obtained from a basal segment of three-day-old seedlings ofT. aestivum, cv. Taezhnaya. The yield of plants from one explant was doubled due to the use of maltose in the regeneration medium. The prospects of using leaf segments as the explants for the genetic transformation of wheat plants are discussed.  相似文献   
12.
The production of biodegradable polymers that can be used to substitute petrochemical compounds in commercial products in transgenic plants is an important challenge for plant biotechnology. Nevertheless, it is often accompanied by reduced plant fitness. To decrease the phenotypic abnormalities of the sprout and to increase polymer production, we restricted cyanophycin accumulation to the potato tubers by using the cyanophycin synthetase gene ( cph ATe) from Thermosynechococcus elongatus BP-1, which is under the control of the tuber-specific class 1 promoter (B33). Tuber-specific cytosolic (pB33- cph ATe) as well as tuber-specific plastidic (pB33-PsbY- cph ATe) expression resulted in significant polymer accumulation solely in the tubers. In plants transformed with pB33- cph ATe, both cyanophycin synthetase and cyanophycin were detected in the cytoplasm leading to an increase up to 2.3% cyanophycin of dry weight and resulting in small and deformed tubers. In B33-PsbY- cph ATe tubers, cyanophycin synthetase and cyanophycin were exclusively found in amyloplasts leading to a cyanophycin accumulation up to 7.5% of dry weight. These tubers were normal in size, some clones showed reduced tuber yield and sometimes exhibited brown sunken staining starting at tubers navel. During a storage period over of 32 weeks of one selected clone, the cyanophycin content was stable in B33-PsbY- cph ATe tubers but the stress symptoms increased. However, all tubers were able to germinate. Nitrogen fertilization in the greenhouse led not to an increased cyanophycin yield, slightly reduced protein content, decreased starch content, and changes in the amounts of bound and free arginine and aspartate, as compared with control tubers were observed.  相似文献   
13.
Genes conferring resistance to antibiotics have been widely used as markers for the selection of transformed cells in the development of genetically modified (GM) plants. Their presence in GM plants released in the environment or used as food or feed has raised concerns over the past years regarding possible risks for human health and the environment. Although these concerns have not been supported so far by scientific evidence, the implementation of selection approaches avoiding the presence of antibiotic resistance marker genes (ARMGs) in the final GM plant is increasingly considered by GM plant developers, not only to alleviate the above-mentioned concerns, but also to circumvent technical limitations associated with the use of ARMGs. In the current paper, we present the results of a three-step analysis of selectable markers and reporter genes as well as methods aiming at developing marker-free GM plants. First, based on a comprehensive review of the scientific literature, technical developments in this domain are presented. Second, a state-of-the-art of the current use of selection approaches is provided based on publicly available information on GM plants tested in the field or authorized for commercialization. Third, in order to get more insight in the underlying practical, scientific and/or regulatory arguments supporting the choice of selection approaches, we present the results of a survey directed at relevant developers and users of GM plants. The applicability, efficiency, operational access and biosafety of the various selection approaches is discussed and considered in light of their current use, and in perspective to the long history of use of ARMGs in plant biotechnology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号