首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   13篇
  国内免费   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   5篇
  2015年   9篇
  2014年   4篇
  2013年   10篇
  2012年   13篇
  2011年   16篇
  2010年   14篇
  2009年   7篇
  2008年   17篇
  2007年   8篇
  2006年   6篇
  2005年   13篇
  2004年   6篇
  2003年   11篇
  2002年   8篇
  2001年   10篇
  2000年   7篇
  1999年   13篇
  1998年   9篇
  1997年   6篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   7篇
  1992年   13篇
  1991年   6篇
  1990年   7篇
  1989年   7篇
  1988年   4篇
  1987年   8篇
  1986年   7篇
  1985年   6篇
  1984年   7篇
  1983年   4篇
  1982年   2篇
  1981年   7篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1973年   1篇
  1954年   1篇
排序方式: 共有314条查询结果,搜索用时 46 毫秒
51.
Successful mitosis requires the right protein be degraded at the right time. Central to this is the spindle checkpoint that prevents the destruction of securin and cyclin B1 when there are improperly attached chromosomes. The principal target of the checkpoint is Cdc20, which activates the anaphase-promoting complex/cyclosome (APC/C). A Drosophila Cdc20/fizzy mutant arrests in mitosis with high levels of cyclins A and B, but paradoxically the spindle checkpoint does not stabilize cyclin A. Here, we investigated this paradox and found that Cdc20 is rate limiting for cyclin A destruction. Indeed, Cdc20 binds efficiently to cyclin A before and in mitosis, and this complex has little associated Mad2. Furthermore, the cyclin A complex must bind to a Cks protein to be degraded independently of the checkpoint. Thus, we identify a crucial role for the Cks proteins in mitosis and one mechanism by which the APC/C can target substrates independently of the spindle checkpoint.  相似文献   
52.
Increasing atmospheric CO2 concentration and related climate change have stimulated much interest in the potential of soils to sequester carbon. In ‘The Jena Experiment’, a managed grassland experiment on a former agricultural field, we investigated the link between plant diversity and soil carbon storage. The biodiversity gradient ranged from one to 60 species belonging to four functional groups. Stratified soil samples were taken to 30 cm depth from 86 plots in 2002, 2004 and 2006, and organic carbon contents were determined. Soil organic carbon stocks in 0–30 cm decreased from 7.3 kg C m?2 in 2002 to 6.9 kg C m?2 in 2004, but had recovered to 7.8 kg C m?2 by 2006. During the first 2 years, carbon storage was limited to the top 5 cm of soil while below 10 cm depth, carbon was lost probably as short‐term effect of the land use change. After 4 years, carbon stocks significantly increased within the top 20 cm. More importantly, carbon storage significantly increased with sown species richness (log‐transformed) in all depth segments and even carbon losses were significantly smaller with higher species richness. Although increasing species diversity increased root biomass production, statistical analyses revealed that species diversity per se was more important than biomass production for changes in soil carbon. Below 20 cm depth, the presence of one functional group, tall herbs, significantly reduced carbon losses in the beginning of the experiment. Our analysis indicates that plant species richness and certain plant functional traits accelerate the build‐up of new carbon pools within 4 years. Additionally, higher plant diversity mitigated soil carbon losses in deeper horizons. This suggests that higher biodiversity might lead to higher soil carbon sequestration in the long‐term and therefore the conservation of biodiversity might play a role in greenhouse gas mitigation.  相似文献   
53.
Nuclear deoxyribonucleic acid sequences from approximately 15,000 salmon louse expressed sequence tags (ESTs), the complete mitochondrial genome (16,148bp) of salmon louse, and 16S ribosomal ribonucleic acid (rRNA) and cytochrome oxidase subunit I (COI) genes from 68 salmon lice collected from Japan, Alaska, and western Canada support a Pacific lineage of Lepeophtheirus salmonis that is distinct from that occurring in the Atlantic Ocean. On average, nuclear genes are 3.2% different, the complete mitochondrial genome is 7.1% different, and 16S rRNA and COI genes are 4.2% and 6.1% different, respectively. Reduced genetic diversity within the Pacific form of L. salmonis is consistent with an introduction into the Pacific from the Atlantic Ocean. The level of divergence is consistent with the hypothesis that the Pacific form of L. salmonis coevolved with Pacific salmon (Onchorhynchus spp.) and the Atlantic form coevolved with Atlantic salmonids (Salmo spp.) independently for the last 2.5–11 million years. The level of genetic divergence coincides with the opportunity for migration of fish between the Atlantic and Pacific Ocean basins via the Arctic Ocean with the opening of the Bering Strait, approximately 5 million years ago. The genetic differences may help explain apparent differences in pathogenicity and environmental sensitivity documented for the Atlantic and Pacific forms of L. salmonis. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
54.
The ethanol-induced rabbit liver microsomal cytochrome P-450, P-450LM3a, has been shown previously to efficiently catalyze the demethylation of N-nitrosodimethylamine (NDMA) with a Km of 2.9 mM. Since the predominant Km in hepatic microsomes from ethanol-treated rabbits is 0.07 mM, the role of P-450LM3a in the activation of this carcinogen has been uncertain. In the present study, antibodies to P-450LM3a were shown to almost completely inhibit NDMA demethylation by the purified P-450 in a reconstituted system as well as the low-Km activity of liver microsomes from control or ethanol-treated rabbits. In contrast, the antibody did not inhibit the high-Km NDMA demethylase activity in the microsomes. These results indicate that P-450LM3a is the major P-450 responsible for the low-Km NDMA demethylase activity. In addition, evidence is provided for the existence of a cytochrome immunochemically similar to P-450LM3a in liver microsomes from rats, mice, and guinea pigs that effectively catalyzes the demethylation of NDMA.  相似文献   
55.
Summary The genetic distances among primate lineages estimated from orthologous noncoding nucleotide sequences of -type globin loci and their flanking and intergenic DNA agree closely with the distances (delta T50H values) estimated by cross hybridization of total genomic single-copy DNAs. These DNA distances and the maximum parsimony tree constructed for the nucleotide sequence orthologues depict a branching pattern of primate lineages that is essentially congruent with the picture from phylogenetic analyses of morphological characters. The molecular evidence, however, resolves ambiguities in the morphological picture and provides an objective view of the cladistic position of humans among the primates. The molecular data group humans with chimpanzees in subtribe Hominina, with gorillas in tribe Hominini, orangutans in subfamily Homininae, gibbons in family Hominidae, Old World monkeys in infraorder Catarrhini, New World monkeys in semisuborder Anthropoidea, tarsiers in suborder Haplorhini, and strepsirhines (lemuriforms and lorisiforms) in order Primates. A seeming incongruency between organismal and molecular levels of evolution, namely that morphological evolution appears to have speeded up in higher primates, especially in the lineage to humans, while molecular evolution has slowed down, may have the trivial explanation that relatively small genetic changes may sometimes result in marked phenotypic changes.  相似文献   
56.
57.
Isozyme 3a of rabbit hepatic cytochrome P-450, also termed P-450ALC, was previously isolated and characterized and was shown to be induced 3- to 5-fold by exposure to ethanol. In the present study, antibody against rabbit P-450ALC was used to identify a homologous protein in alcohol dehydrogenase-negative (ADH-) and -positive (ADH+) deermice, Peromyscus maniculatus. The antibody reacts with a single protein having an apparent molecular weight of 52,000 on immunoblots of hepatic microsomes from untreated and ethanol-treated deermice from both strains. The level of the homologous protein was about 2-fold greater in microsomes from naive ADH- than from naive ADH+ animals. Ethanol treatment induced the protein about 3-fold in the ADH+ strain and about 4-fold in the ADH- strain. The antibody to rabbit P-450ALC inhibited the microsomal metabolism of ethanol and aniline. The homologous protein, termed deermouse P-450ALC, catalyzed from 70 to 80% of the oxidation of ethanol and about 90% of the hydroxylation of aniline by microsomes from both strains after ethanol treatment. The antibody-inhibited portion of the microsomal activities, which are attributable to the P-450ALC homolog, increased about 3-fold upon ethanol treatment in the ADH+ strain and about 4-fold in the ADH- strain, in excellent agreement with the results from immunoblots. The total microsomal P-450 content and the rate of ethanol oxidation were induced 1.4-fold and 2.2-fold, respectively, by ethanol in the ADH+ strain and 1.9-fold and 3.3-fold, respectively, in the ADH- strain. Thus, the total microsomal P-450 content and ethanol oxidation underestimate the induction of the P-450ALC homolog in both strains. A comparison of the rates of microsomal ethanol oxidation in vitro with rates of ethanol elimination in vivo indicates that deermouse P-450ALC could account optimally for 3 and 8% of total ethanol elimination in naive ADH+ and ADH- strains, respectively. After chronic ethanol treatment, P-450ALC could account maximally for 8% of the total ethanol elimination in the ADH+ strain and 22% in the ADH- strain. Further, cytochrome P-450ALC appears to be responsible for about one-half of the increase in the rate of ethanol elimination in vivo after chronic treatment with ethanol. These results indicate that the contribution of P-450ALC to ethanol oxidation in the deermouse is relatively small. Desferrioxamine had no effect on rates of ethanol uptake by perfused livers from ADH-negative deermice, indicating that ethanol oxidation by a hydroxyl radical-mediated mechanism was not involved in ethanol metabolism in this mutant.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
58.
The fetal globin genes G gamma and A gamma from one chromosome of a chimpanzee (Pan troglodytes) were sequenced and found to be closely similar to the corresponding genes of man and the gorilla. These genes contain identical promoter and termination signals and have exons 1 and 2 separated by the conserved short intron 1 (122 bp) and exons 2 and 3 separated by the more rapidly evolving, larger intron 2 (893 bp and 887 bp in chimpanzee G gamma and A gamma, respectively). Each intron 2 has a stretch of simple sequence DNA (TG)n serving possibly as a "hot spot" for recombination. The two chimpanzee genes encode polypeptide chains that differ only at position 136 (glycine in G gamma and alanine in A gamma) and that are identical to the corresponding human chains, which have aspartic acid at position 73 and lysine at 104 in contrast to glycine and arginine at these respective positions of the gorilla A gamma chain. Phylogenetic analysis by the parsimony method revealed four silent (synonymous) base substitutions in evolutionary descent of the chimpanzee G gamma and A gamma codons and none in the human and gorilla codons. These Homininae (Pan, Homo, Gorilla) coding sequences evolved at one-tenth the average mammalian rate for nonsynonymous and one-fourth that for synonymous substitutions. Three sequence regions that were affected by gene conversions between chimpanzee G gamma and A gamma loci were identified: one extended 3' of the hot spot with G gamma replaced by the A gamma sequence, another extended 5' of the hot spot with A gamma replaced by G gamma, and the third conversion extended from the 5' flanking to the 5' end of intron 2, with G gamma replaced here by the A gamma sequence. A conversion similar to this third one has occurred independently in the descent of the gorilla genes. The four previously identified conversions, labeled C1-C4 (Scott et al. 1984), were substantiated with the addition of the chimpanzee genes to our analysis (C1 being shared by all three hominines and C2, C3, and C4 being found only in humans). Thus, the fetal genes from all three of these hominine species have been active in gene conversions during the descent of each species.   相似文献   
59.
This study compares four models for predicting the potential distribution of non-indigenous weed species in the conterminous U.S. The comparison focused on evaluating modeling tools and protocols as currently used for weed risk assessment or for predicting the potential distribution of invasive weeds. We used six weed species (three highly invasive and three less invasive non-indigenous species) that have been established in the U.S. for more than 75 years. The experiment involved providing non-U. S. location data to users familiar with one of the four evaluated techniques, who then developed predictive models that were applied to the United States without knowing the identity of the species or its U.S. distribution. We compared a simple GIS climate matching technique known as Proto3, a simple climate matching tool CLIMEX Match Climates, the correlative model MaxEnt, and a process model known as the Thornley Transport Resistance (TTR) model. Two experienced users ran each modeling tool except TTR, which had one user. Models were trained with global species distribution data excluding any U.S. data, and then were evaluated using the current known U.S. distribution. The influence of weed species identity and modeling tool on prevalence and sensitivity effects was compared using a generalized linear mixed model. Each modeling tool itself had a low statistical significance, while weed species alone accounted for 69.1 and 48.5% of the variance for prevalence and sensitivity, respectively. These results suggest that simple modeling tools might perform as well as complex ones in the case of predicting potential distribution for a weed not yet present in the United States. Considerations of model accuracy should also be balanced with those of reproducibility and ease of use. More important than the choice of modeling tool is the construction of robust protocols and testing both new and experienced users under blind test conditions that approximate operational conditions.  相似文献   
60.
Chloroplast expression plasmids pTRBCL-GUS (tobaccorbcL promoter-gusA-tobaccorbcL terminator) and pHHU3004 (spinach ‘x gene’ promoter-gusA-spinachrbcL terminator) and a control nuclear expression plasmid pBI221 (CaMV 35S promoter-gusA-NOS terminator) were introduced separately into cultured cells and tissues of tobacco andArabidopsis thaliana, as well as into cultured cells of the lower land plants liverwort and hornwort by a pneumatic particle gun. The pTRBCL-GUS and pHHU3004 plasmids produced many blue spots in the BY-2 cells and the roots ofArabidopsis thaliana, but not in any of the green cells or tissues. The results suggest that the pTRBCL-GUS and pHHU3004 plasmids are expressed more in proplastids and amyloplasts than in chloroplasts. GUS activities of the BY-2 cells bombarded with pTRBCL-GUS and pHHU3004 were insensitive to α-amanitin treatment (10 and 50 μg/ml), while that of the cells with pBI221 greatly decreased by the same treatment. Hence, it is likely that the pTRBCL-GUS and pHHU3004 plasmids were substantially expressed in the proplastids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号