首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   64篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   10篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   8篇
  2014年   10篇
  2013年   9篇
  2012年   18篇
  2011年   15篇
  2010年   9篇
  2009年   14篇
  2008年   22篇
  2007年   16篇
  2006年   23篇
  2005年   20篇
  2004年   21篇
  2003年   22篇
  2002年   26篇
  2001年   30篇
  2000年   27篇
  1999年   21篇
  1998年   6篇
  1997年   5篇
  1996年   4篇
  1995年   6篇
  1994年   12篇
  1993年   11篇
  1992年   9篇
  1991年   3篇
  1990年   2篇
  1989年   10篇
  1988年   4篇
  1984年   2篇
  1975年   1篇
  1973年   1篇
  1960年   1篇
排序方式: 共有416条查询结果,搜索用时 93 毫秒
31.
32.
Protein kinases regulate a number of critical events in mitosis and meiosis. A study of the evolution of kinases involved in cell cycle control (CCC) might shed light on the evolution of the eukaryotic cell cycle. In particular, applying quantitative phylogenetic methods to key CCC kinases could provide information on the relative timing of gene duplication events. To investigate the evolution of CCC kinases, we constructed phylogenetic trees for the CDC28 family and performed statistical tests of the tree topology. This family includes the cyclin-dependent kinases (CDKs), which are key regulators of the eukaryotic cell cycle, as well as other CCC kinases. We found that CDKs and, in particular, the principal cell cycle regulator Cdc28p, branch off the phylogenetic tree at a late stage, after several other kinases involved in either mitosis or meiosis regulation. On the basis of this tree topology, it is proposed that, at early stages of evolution, the eukaryotic cell cycle was not controlled by CDKs and that only a subset of extant kinases, notably the DNA damage checkpoint kinase Chk1p, were in place. During subsequent evolution, a series of duplications of kinase genes occurred, gradually adding more kinases to the CCC system, the CDKs being among the last major additions.  相似文献   
33.
Revisiting the problem of intron-exon identification, we use a principal component analysis (PCA) to classify DNA sequences and present first results that validate our approach. Sequences are translated into document vectors that represent their word content; a principal component analysis then defines Gaussian-distributed sequence classes. The classification uses word content and variation of word usage to distinguish sequences. We test our approach with several data sets of genomic DNA and are able to classify introns and exons with an accuracy of up to 96%. We compare the method with the best traditional coding measure, the non-overlapping hexamer frequency count, and find that the PCA method produces better results. We also investigate the degree of cross-validation between different data sets of introns and exons and find evidence that the quality of a data set can be detected.  相似文献   
34.
Aravind L  Koonin EV 《Genome biology》2001,2(3):research0007.1-research00078

Background  

Protein fold recognition using sequence profile searches frequently allows prediction of the structure and biochemical mechanisms of proteins with an important biological function but unknown biochemical activity. Here we describe such predictions resulting from an analysis of the 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenases, a class of enzymes that are widespread in eukaryotes and bacteria and catalyze a variety of reactions typically involving the oxidation of an organic substrate using a dioxygen molecule.  相似文献   
35.
Makarova KS  Ponomarev VA  Koonin EV 《Genome biology》2001,2(9):research0033.1-research003314

Background

Ribosomal proteins are encoded in all genomes of cellular life forms and are, generally, well conserved during evolution. In prokaryotes, the genes for most ribosomal proteins are clustered in several highly conserved operons, which ensures efficient co-regulation of their expression. Duplications of ribosomal-protein genes are infrequent, and given their coordinated expression and functioning, it is generally assumed that ribosomal-protein genes are unlikely to undergo horizontal transfer. However, with the accumulation of numerous complete genome sequences of prokaryotes, several paralogous pairs of ribosomal protein genes have been identified. Here we analyze all such cases and attempt to reconstruct the evolutionary history of these ribosomal proteins.

Results

Complete bacterial genomes were searched for duplications of ribosomal proteins. Ribosomal proteins L36, L33, L31, S14 are each duplicated in several bacterial genomes and ribosomal proteins L11, L28, L7/L12, S1, S15, S18 are so far duplicated in only one genome each. Sequence analysis of the four ribosomal proteins, for which paralogs were detected in several genomes, two of the ribosomal proteins duplicated in one genome (L28 and S18), and the ribosomal protein L32 showed that each of them comes in two distinct versions. One form contains a predicted metal-binding Zn-ribbon that consists of four conserved cysteines (in some cases replaced by histidines), whereas, in the second form, these metal-chelating residues are completely or partially replaced. Typically, genomes containing paralogous genes for these ribosomal proteins encode both versions, designated C+ and C-, respectively. Analysis of phylogenetic trees for these seven ribosomal proteins, combined with comparison of genomic contexts for the respective genes, indicates that in most, if not all cases, their evolution involved a duplication of the ancestral C+ form early in bacterial evolution, with subsequent alternative loss of the C+ and C- forms in different lineages. Additionally, evidence was obtained for a role of horizontal gene transfer in the evolution of these ribosomal proteins, with multiple cases of gene displacement 'in situ', that is, without a change of the gene order in the recipient genome.

Conclusions

A more complex picture of evolution of bacterial ribosomal proteins than previously suspected is emerging from these results, with major contributions of lineage-specific gene loss and horizontal gene transfer. The recurrent theme of emergence and disruption of Zn-ribbons in bacterial ribosomal proteins awaits a functional interpretation.  相似文献   
36.
Selection in the evolution of gene duplications   总被引:1,自引:0,他引:1  
Kondrashov FA  Rogozin IB  Wolf YI  Koonin EV 《Genome biology》2002,3(2):research0008.1-research00089

Background  

Gene duplications have a major role in the evolution of new biological functions. Theoretical studies often assume that a duplication per se is selectively neutral and that, following a duplication, one of the gene copies is freed from purifying (stabilizing) selection, which creates the potential for evolution of a new function.  相似文献   
37.
Orthology,paralogy and proposed classification for paralog subtypes   总被引:1,自引:0,他引:1  
The paper clears up confusions about the concepts of orthology and paralogy, particularly in cases involving gene family expansions. The terms ‘inparalog’ and ‘outparalog’ are defined to distinguish ancient paralogs from lineage-specific ones.  相似文献   
38.
Connected gene neighborhoods in prokaryotic genomes   总被引:12,自引:1,他引:11  
A computational method was developed for delineating connected gene neighborhoods in bacterial and archaeal genomes. These gene neighborhoods are not typically present, in their entirety, in any single genome, but are held together by overlapping, partially conserved gene arrays. The procedure was applied to comparing the orders of orthologous genes, which were extracted from the database of Clusters of Orthologous Groups of proteins (COGs), in 31 prokaryotic genomes and resulted in the identification of 188 clusters of gene arrays, which included 1001 of 2890 COGs. These clusters were projected onto actual genomes to produce extended neighborhoods including additional genes, which are adjacent to the genes from the clusters and are transcribed in the same direction, which resulted in a total of 2387 COGs being included in the neighborhoods. Most of the neighborhoods consist predominantly of genes united by a coherent functional theme, but also include a minority of genes without an obvious functional connection to the main theme. We hypothesize that although some of the latter genes might have unsuspected roles, others are maintained within gene arrays because of the advantage of expression at a level that is typical of the given neighborhood. We designate this phenomenon ‘genomic hitchhiking’. The largest neighborhood includes 79 genes (COGs) and consists of overlapping, rearranged ribosomal protein superoperons; apparent genome hitchhiking is particularly typical of this neighborhood and other neighborhoods that consist of genes coding for translation machinery components. Several neighborhoods involve previously undetected connections between genes, allowing new functional predictions. Gene neighborhoods appear to evolve via complex rearrangement, with different combinations of genes from a neighborhood fixed in different lineages.  相似文献   
39.
Transposable elements (TEs) are abundant in mammalian genomes and have potentially contributed to their hosts' evolution by providing novel regulatory or coding sequences. We surveyed different classes of regulatory region in the human genome to assess systematically the potential contribution of TEs to gene regulation. Almost 25% of the analyzed promoter regions contain TE-derived sequences, including many experimentally characterized cis-regulatory elements. Scaffold/matrix attachment regions (S/MARs) and locus control regions (LCRs) that are involved in the simultaneous regulation of multiple genes also contain numerous TE-derived sequences. Thus, TEs have probably contributed substantially to the evolution of both gene-specific and global patterns of human gene regulation.  相似文献   
40.
The database of Clusters of Orthologous Groups of proteins (COGs), which represents an attempt on a phylogenetic classification of the proteins encoded in complete genomes, currently consists of 2791 COGs including 45 350 proteins from 30 genomes of bacteria, archaea and the yeast Saccharomyces cerevisiae (http://www.ncbi.nlm.nih. gov/COG). In addition, a supplement to the COGs is available, in which proteins encoded in the genomes of two multicellular eukaryotes, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster, and shared with bacteria and/or archaea were included. The new features added to the COG database include information pages with structural and functional details on each COG and literature references, improvements of the COGNITOR program that is used to fit new proteins into the COGs, and classification of genomes and COGs constructed by using principal component analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号