首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2226篇
  免费   129篇
  国内免费   4篇
  2023年   8篇
  2022年   15篇
  2021年   27篇
  2020年   26篇
  2019年   27篇
  2018年   34篇
  2017年   39篇
  2016年   78篇
  2015年   109篇
  2014年   95篇
  2013年   160篇
  2012年   188篇
  2011年   196篇
  2010年   103篇
  2009年   115篇
  2008年   150篇
  2007年   144篇
  2006年   118篇
  2005年   104篇
  2004年   104篇
  2003年   90篇
  2002年   76篇
  2001年   47篇
  2000年   52篇
  1999年   34篇
  1998年   20篇
  1997年   14篇
  1996年   12篇
  1995年   7篇
  1994年   6篇
  1992年   16篇
  1991年   14篇
  1990年   10篇
  1989年   12篇
  1988年   11篇
  1987年   13篇
  1986年   10篇
  1985年   4篇
  1984年   4篇
  1981年   7篇
  1980年   6篇
  1979年   9篇
  1978年   4篇
  1977年   5篇
  1976年   4篇
  1974年   3篇
  1972年   3篇
  1971年   3篇
  1966年   4篇
  1936年   3篇
排序方式: 共有2359条查询结果,搜索用时 31 毫秒
131.
Xylose reductase (XR) is a key enzyme in D-xylose metabolism, catalyzing the reduction of D-xylose to xylitol. An NADH-preferring XR was purified to homogeneity from Candida parapsilosis KFCC-10875, and the xyl1 gene encoding a 324-amino-acid polypeptide with a molecular mass of 36,629 Da was subsequently isolated using internal amino acid sequences and 5' and 3' rapid amplification of cDNA ends. The C. parapsilosis XR showed high catalytic efficiency (kcat/Km = 1.46 s(-1) mM(-1)) for D-xylose and showed unusual coenzyme specificity, with greater catalytic efficiency with NADH (kcat/Km = 1.39 x 10(4) s(-1) mM(-1)) than with NADPH (kcat/Km = 1.27 x 10(2) s(-1) mM(-1)), unlike all other aldose reductases characterized. Studies of initial velocity and product inhibition suggest that the reaction proceeds via a sequentially ordered Bi Bi mechanism, which is typical of XRs. Candida tropicalis KFCC-10960 has been reported to have the highest xylitol production yield and rate. It has been suggested, however, that NADPH-dependent XRs, including the XR of C. tropicalis, are limited by the coenzyme availability and thus limit the production of xylitol. The C. parapsilosis xyl1 gene was placed under the control of an alcohol dehydrogenase promoter and integrated into the genome of C. tropicalis. The resulting recombinant yeast, C. tropicalis BN-1, showed higher yield and productivity (by 5 and 25%, respectively) than the wild strain and lower production of by-products, thus facilitating the purification process. The XRs partially purified from C. tropicalis BN-1 exhibited dual coenzyme specificity for both NADH and NADPH, indicating the functional expression of the C. parapsilosis xyl1 gene in C. tropicalis BN-1. This is the first report of the cloning of an xyl1 gene encoding an NADH-preferring XR and its functional expression in C. tropicalis, a yeast currently used for industrial production of xylitol.  相似文献   
132.
An acoustic cell settler (ACS) using ultrasound at cells of 3 MHz was used to recycle Saccharomyces cerevisiae in a fermenter. The locations of both the inlet and outlet in the acoustic cell settler, which have a relatively long distance between the transducer and reflector, were optimized. A tilted settler was designed to make up for the defect in the horizontal ACS, which has a low recovery ratio. The tilted ACS gave a recovery ratio of yeast cells of about 5 during the most period of operation, which was twice that of the horizontal ACS.  相似文献   
133.
HslVU is a two-component ATP-dependent protease, consisting of HslV peptidase and HslU ATPase. CodW and CodX, encoded by the cod operon in Bacillus subtilis, display 52% identity in their amino acid sequences to HslV and HslU in Escherichia coli, respectively. Here we show that CodW and CodX can function together as a new type of two-component ATP-dependent protease. Remarkably, CodW uses its N-terminal serine hydroxyl group as the catalytic nucleophile, unlike HslV and certain beta-type subunits of the proteasomes, which have N-terminal threonine functioning as an active site residue. The ATP-dependent proteolytic activity of CodWX is strongly inhibited by serine protease inhibitors, unlike that of HslVU. Replacement of the N-terminal serine of CodW by alanine or even threonine completely abolishes the enzyme activity. These results indicate that CodWX in B.subtilis represents the first N-terminal serine protease among all known proteolytic enzymes.  相似文献   
134.
A UDP-glucose pyrophosphorylase (UGPase) gene from Acetobacter xylinum BRC5 has been cloned, sequenced, and expressed in Escherichia coli. The gene consists of 867 nucleotides and encodes a polypeptide of 289 amino acid residues with a calculated molecular mass of 31,493 Da. The amino acid sequences of the enzyme showed an 85.8% identity to those of an enzyme from A. xilinum ATCC 23768. A polyhistidine-UGPase fusion enzyme was expressed and purified from the transformed E. coli. The enzyme showed a 35,620-Da single protein band on SDS/PAGE and an about 160,000-Da protein band on 8-16% pore-gradient polyacrylamide gel, indicating the enzyme may be a tetramer or pentamer composed of four or five identical subunits. Kinetic analysis of the enzyme showed a typical Michaelis-Menten substrate saturation pattern, from which Km and Vmax were calculated to be 3.22 mM and 175.4 micromol x min(-1) x mg(-1) for UDP-glucose and 0.24 mM and 69.4 micromol x min(-1) x mg(-1) for PPi, respectively, required Mg2+ for maximal activity, and was inhibited by free pyrophosphate. Computer-aided comparison of the Acetobacter enzyme sequence with those of other bacterial enzymes found significant similarities among them and predicted that Lys84 is a catalytically important residue. Lys84 in the enzyme, which was also conserved in other bacterial enzyme sequences, was replaced by arginine or leucine. The K84R mutant enzyme was successfully expressed in E. coli and showed enzyme activity (63% of the wild-type enzyme activity), but K84L was not isolated in stable form. These results suggest that Lys84 is significant in not only catalysis but also maintenance of the active structure.  相似文献   
135.
136.
Sterol regulatory element-binding proteins (SREBPs) activate genes of cholesterol and fatty acid metabolism. In each case, a ubiquitous co-regulatory factor that binds to a neighboring recognition site is also required for efficient promoter activation. It is likely that gene- and pathway-specific regulation by the separate SREBP isoforms is dependent on subtle differences in how the individual proteins function with specific co-regulators to activate gene expression. In the studies reported here we extend these observations significantly by demonstrating that SREBPs are involved in both sterol regulation and carbohydrate activation of the FAS promoter. We also demonstrate that the previously implicated Sp1 site is largely dispensable for sterol regulation in established cultured cells, whereas a CCAAT-binding factor/nuclear factor Y is critically important. In contrast, carbohydrate activation of the FAS promoter in primary hepatocytes is dependent upon SREBP and both the Sp1 and CCAAT-binding factor/nuclear factor Y sites. Because 1c is the predominant SREBP isoform expressed in hepatocytes and 1a is more abundant in sterol depleted established cell lines, this suggests that the different SREBP isoforms utilize distinct co-regulatory factors to activate target gene expression.  相似文献   
137.
This study was designed to examine the developmental ability of porcine embryos after somatic cell nuclear transfer. Porcine fibroblasts were isolated from fetuses at Day 40 of gestation. In vitro-matured porcine oocytes were enucleated and electrically fused with somatic cells. The reconstructed eggs were activated using electrical stimulus and cultured in vitro for 6 days. Nuclear-transferred (NT) embryos activated at a field strength of 120 V/mm (11.6 +/- 1.6%) showed a higher developmental rate as compared to the 150-V/mm group (6.5 +/- 2.3%) (P: < 0.05), but the mean cell numbers of blastocysts were similar between the two groups. Rates of blastocyst development from NT embryos electrically pulsed at different times (2, 4, and 6 h) after electrofusion were 11.6 +/- 2.9, 6.6 +/- 2.3, and 8.1 +/- 3.3%, respectively. The mean cell numbers of blastocysts developed from NT embryos were gradually decreased (30.4 +/- 10.4 > 24.6 +/- 10.1 > 16.5 +/- 7.4 per blastocyst) as exposure time (2, 4, and 6 h) of nuclei to oocyte cytoplast before activation was prolonged. There was a significant difference in the cell number between the 2- and 6-h groups (P: < 0. 05). Nuclear-transferred embryos (9.4 +/- 0.9%) had a lower developmental rate than in vitro fertilization (IVF)-derived (21.4 +/- 1.9%) or parthenogenetic embryos (22.4 +/- 7.2%) (P: < 0.01). The mean cell number (28.9 +/- 11.4) of NT-derived blastocysts was smaller than that (38.6 +/- 10.4) of IVF-derived blastocysts (P: < 0. 05) and was similar to that (29.9 +/- 12.1) of parthenogenetic embryos. Our results suggest that porcine NT eggs using somatic cells after electrical activation have developmental potential to the blastocyst stage, although with smaller cell numbers compared to IVF embryos.  相似文献   
138.
Kim A  Lee J  Choi JS  Won NH  Koo BH 《Acta cytologica》2000,44(3):361-367
OBJECTIVE: To evaluate the accuracy of fine needle aspiration cytology (FNAC) of the breast at our institution and to perform quality assurance. STUDY DESIGN: Two hundred forty-six cases with pathologic confirmation were selected and reviewed. A pathologist performed most of the aspirations at an outpatient breast clinic. We correlated cytologic and histologic findings and evaluated the influence of the size, location, grade, and pathologic subtypes and fibrosis in breast lesions on diagnostic results. RESULTS: The likelihood ratios for malignant, suspicious, atypical, benign and unsatisfactory cytologic diagnoses were 98.71, 5.48, 1.09, 0.07 and 0.55, respectively. The absolute and complete sensitivities for malignant lesions were 64.5% and 90.3%, respectively. The specificity was 71.9%. False negative and positive rates were 4.3% and 0.7%, respectively. The predictive value for a malignant cytologic diagnosis was 98.4%. The rate of unsatisfactory samples was 9.3%. The rate of concordance between cytologic and histologic diagnosis was lower for large and diffusely growing lesions (benign and malignant), for malignancies with abundant fibrosis and of unusual types and for carcinomas of low grade. All axillary and recurrent chest wall lesions were diagnosed cytologically. Cell block sections were useful in a small number of cases. CONCLUSION: Understanding the performance and limitations of FNAC can enhance its value as a diagnostic technique in the management of breast disease.  相似文献   
139.
Effect of a New Variety of Apis mellifera Propolis onMutans Streptococci   总被引:2,自引:0,他引:2  
The effects of a new variety of propolis, from Northeastern Brazil (BA), on growth of mutans streptococci, cell adherence, and water-insoluble glucan (WIG) synthesis were evaluated. Propolis from Southeastern (MG) and Southern (RS) Brazil were also tested as an extension of our previous work. Ethanolic extracts of propolis (EEP) were prepared and analyzed by reversed-phase HPLC. For the antibacterial activity assays, minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of EEPs against Streptococcus mutans, S. sobrinus, and S. cricetus were determined. Cell adherence of S. mutans and S. sobrinus to a glass surface was measured spectrophotometrically at 550 nm. WIG synthesized from sucrose by glucosyltransferase (Gtf) was extracted and quantified by the phenol-sulfuric method. The HPLC profile of the new variety of propolis was entirely different from Southeastern and Southern propolis. Neither flavonoid aglycones nor p-coumaric acid were detected in EEP BA. All EEPs demonstrated biological activities against mutans streptococci; EEP BA showed the highest potency in all in vitro parameters evaluated in this study. The ranges of MIC values were 50 (EEP BA)–400 μg/ml (MG), for S. mutans; and 25 (BA)–400 μg/ml (MG), for S. sobrinus and S. cricetus. The bactericidal concentration of EEPs was four to eight times the MIC values. The adherence of S. mutans and S. sobrinus cells and WIG synthesis were markedly inhibited by EEPs, demonstrating significant inhibition at all concentrations compared with the control (80% ethanol) (p < 0.05). EEP BA showed 80% inhibition of cell adherence and WIG synthesis at concentrations as low as 12.5 and 7.8 μg/ml, respectively. The results show that the new variety of propolis was exceptionally effective in all in vitro parameters tested against mutans streptococci; biological effects of propolis are likely not to be due solely to flavonoids and (hydroxy)cinnamic acid derivatives. Received: 14 February 2000 / Accepted: 8 May 2000  相似文献   
140.
CYP119 from Sulfolobus solfataricus, the first thermophilic cytochrome P450, is stable at up to 85 degrees C. UV-visible and resonance Raman show the enzyme is in the low spin state and only modestly shifts to the high spin state at higher temperatures. Styrene only causes a small spin state shift, but T(1) NMR studies confirm that styrene is bound in the active site. CYP119 catalyzes the H(2)O(2)-dependent epoxidation of styrene, cis-beta-methylstyrene, and cis-stilbene with retention of stereochemistry. This catalytic activity is stable to preincubation at 80 degrees C for 90 min. Site-specific mutagenesis shows that Thr-213 is catalytically important and Thr-214 helps to control the iron spin state. Topological analysis by reaction with aryldiazenes shows that Thr-213 lies above pyrrole rings A and B and is close to the iron atom, whereas Thr-214 is some distance away. CYP119 is very slowly reduced by putidaredoxin and putidaredoxin reductase, but these proteins support catalytic turnover of the Thr-214 mutants. Protein melting curves indicate that the thermal stability of CYP119 does not depend on the iron spin state or the active site architecture defined by the threonine residues. Independence of thermal stability from active site structural factors should facilitate the engineering of novel thermostable catalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号