首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1382篇
  免费   83篇
  国内免费   2篇
  2022年   9篇
  2021年   15篇
  2020年   11篇
  2019年   13篇
  2018年   17篇
  2017年   25篇
  2016年   44篇
  2015年   68篇
  2014年   52篇
  2013年   86篇
  2012年   112篇
  2011年   113篇
  2010年   68篇
  2009年   75篇
  2008年   91篇
  2007年   92篇
  2006年   75篇
  2005年   71篇
  2004年   71篇
  2003年   60篇
  2002年   49篇
  2001年   38篇
  2000年   43篇
  1999年   25篇
  1998年   14篇
  1997年   10篇
  1996年   9篇
  1995年   4篇
  1994年   6篇
  1992年   9篇
  1991年   10篇
  1990年   6篇
  1989年   9篇
  1988年   8篇
  1987年   11篇
  1986年   6篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   4篇
  1977年   3篇
  1976年   4篇
  1974年   2篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
  1968年   1篇
排序方式: 共有1467条查询结果,搜索用时 78 毫秒
61.
Bacterial infection of the tracheobronchial tree is a frequent, serious complication in patients receiving treatment with oxygen and mechanical ventilation, resulting in increased morbidity and mortality. Using human airway epithelial cell culture models, we examined the effect of hyperoxia on bacterial adherence and the expression of interleukin-8 (IL-8), an important mediator involved in the inflammatory process. A 24-h exposure to 95% O(2) increased Pseudomonas aeruginosa (PA) adherence 57% in A549 cells (P < 0.01) and 115% in 16HBE cells (P < 0.01) but had little effect on Staphylococcus aureus (SA) adherence. Exposure to hyperoxia, followed by a 1-h incubation with SA, further enhanced PA adherence (P < 0.01), suggesting that hyperoxia and SA colonization may enhance the susceptibility of lung epithelial cells to gram-negative infections. IL-8 expression was also increased in cells exposed to both hyperoxia and PA. Stable or transient overexpression of manganese superoxide dismutase reduced both basal and stimulated levels of PA adherence and IL-8 levels in response to exposure to either hyperoxia or PA. These data indicate that hyperoxia increases susceptibility to infection and that the pathways are mediated by reactive oxygen species. Therapeutic intervention strategies designed to prevent accumulation of intracellular reactive oxygen species may reduce opportunistic pulmonary infections.  相似文献   
62.
63.
64.
Kang DE  Soriano S  Xia X  Eberhart CG  De Strooper B  Zheng H  Koo EH 《Cell》2002,110(6):751-762
The Alzheimer's disease-linked gene presenilin 1 (PS1) is required for intramembrane proteolysis of APP and Notch. In addition, recent observations strongly implicate PS1 as a negative regulator of the Wnt/beta-catenin signaling pathway, although the mechanism underlying this activity is unknown. Here, we show that presenilin functions as a scaffold that rapidly couples beta-catenin phosphorylation through two sequential kinase activities independent of the Wnt-regulated Axin/CK1alpha complex. Thus, presenilin deficiency results in increased beta-catenin stability in vitro and in vivo by disconnecting the stepwise phosphorylation of beta-catenin, both in the presence and absence of Wnt stimulation. These findings highlight an aspect of beta-catenin regulation outside of the canonical Wnt-regulated pathway and a function of presenilin separate from intramembrane proteolysis.  相似文献   
65.
The synapse loss and neuronal cell death characteristic of Alzheimer's disease (AD) are believed to result in large part from the neurotoxic effects of beta-amyloid peptide (Abeta), a 40-42 amino acid peptide(s) derived proteolytically from beta-amyloid precursor protein (APP). However, APP is also cleaved intracellularly to generate a second cytotoxic peptide, C31, and this cleavage event occurs in vivo as well as in vitro and preferentially in the brains of AD patients (Lu et al. 2000). Here we show that APPC31 is toxic to neurons in primary culture, and that like APP, the APP family members APLP1 and possibly APLP2 are cleaved by caspases at their C-termini. The carboxy-terminal peptide derived from caspase cleavage of APLP1 shows a degree of neurotoxicity comparable to APPC31. Our results suggest that even though APLP1 and APLP2 cannot generate Abeta, they may potentially contribute to the pathology of AD by generating peptide fragments whose toxicity is comparable to that of APPC31.  相似文献   
66.
Cho DI  Koo NY  Chung WJ  Kim TS  Ryu SY  Im SY  Kim KM 《Life sciences》2002,71(17):2071-2082
NF-kappaB that plays an important role in iNOS expression is one of the targets of various potential anti-inflammatory agents including resveratrol. Resveratrol contains a structural similarity with estrogen, and there has been speculation about resveratrol as estrogen agonist. In this study, the mechanism and structural requirements of resveratrol and related hydroxystilbenes for the inhibition of LPS-induced nitric oxide production were studied in macrophage cells (RAW 264.7 and J774) by comparing its effect on LPS-induced NF-kappaB translocation and nitric oxide production, and by considering the possibility of involvement of an estrogen receptor. LPS-induced nitric oxide production was inhibited only when cells were treated with resveratrol prior to stimulation with LPS, suggesting that resveratrol does not affect the enzyme itself. A higher concentration of resveratrol than needed for the inhibition of nitric oxide production was required for the inhibition of NF-kappaB mobilization or iNOS expression. Estrogen and diethylstilbesterol, an estrogen agonist, caused only weak inhibition of nitric oxide production, and the effects of resveratrol were not noticeably blocked by ICI-182780, an estrogen antagonist. Structure-activity analysis of resveratrol and nine hydroxystilbenes suggests that the structural balance between oxygen functional groups on the benzene rings is important for their activity. Our results suggest that resveratrol might act on other cellular targets as well as NF-kappaB at the initial stage of gene expression. Unique structural features of hydroxystilbenes are needed for suppression of nitric oxide production and it is unlikely that estrogen receptor is involved in it.  相似文献   
67.
Plants express numerous calmodulin (CaM) isoforms that exhibit differential activation or inhibition of CaM-dependent enzymes in vitro; however, their specificities toward target enzyme/protein binding are uncertain. A random peptide library displaying a 22-mer peptide on a bacteriophage surface was constructed to screen peptides that specifically bind to plant CaM isoforms (soybean calmodulin (ScaM)-1 and SCaM-4 were used in this study) in a Ca2+-dependent manner. The deduced amino acid sequence analyses of the respective 80 phage clones that were independently isolated via affinity panning revealed that SCaM isoforms require distinct amino acid sequences for optimal binding. SCaM-1-binding peptides conform to a 1-5-10 ((FILVW)XXX(FILV) XXXX(FILVW)) motif (where X denotes any amino acid), whereas SCaM-4-binding peptide sequences conform to a 1-8-14 ((FILVW)XXXXXX(FAILVW)XXXXX(FILVW)) motif. These motifs are classified based on the positions of conserved hydrophobic residues. To examine their binding properties further, two representative peptides from each of the SCaM isoform-binding sequences were synthesized and analyzed via gel mobility shift assays, Trp fluorescent spectra analyses, and phosphodiesterase competitive inhibition experiments. The results of these studies suggest that SCaM isoforms possess different binding sequences for optimal target interaction, which therefore may provide a molecular basis for CaM isoform-specific function in plants. Furthermore, the isolated peptide sequences may serve not only as useful CaM-binding sequence references but also as potential reagents for studying CaM isoform-specific function in vivo.  相似文献   
68.
The human protein tyrosine kinase-6 (PTK6) polypeptide that is deduced from the cDNA sequence contains a Src homology (SH) 3 domain, SH2 domain, and catalytic domain of tyrosine kinase. We initiated biochemical and NMR characterization of PTK6 SH3 domain in order to correlate the structural role of the PTK6 using circular dichroism and heteronuclear NMR techniques. The circular dichroism data suggested that the secondary structural elements of the SH3 domain are mainly composed of beta-sheet conformations. It is most stable when the pH is neutral based on the pH titration data. In addition, a number of cross peaks at the low-field area of the proton chemical shift of the NMR spectra indicated that the PTK6 SH3 domain retains a unique and folded conformation at the neutral pH condition. For other pH conditions, the SH3 domain became unstable and aggregated during NMR measurements, indicating that the structural stability is very sensitive to pH environments. Both the NMR and circular dichroism data indicate that the PTK6 SH3 domain experiences a conformational instability, even in an aqueous solution.  相似文献   
69.
The β-amyloid precursor protein has been the focus of much attention from the Alzheimer's disease community for the past decade and a half. The β-amyloid precursor protein holds a pivotal position in Alzheimer's disease research because it is the precursor to the amyloid β-protein which many believe plays a central role in Alzheimer's disease pathogenesis. It was also the first gene in which mutations associated with inherited Alzheimer's disease were found. Although the molecular details of the generation of amyloid β-protein from β-amyloid precursor protein are being unraveled, the actual physiological functions of β-amyloid precursor protein are far from clear. This situation is changing as accumulating new evidence suggests that the C-terminal cytosolic tail of β-amyloid precursor protein may have multiple biological activities, ranging from axonal transport to nuclear signaling. This article reviews the current state of knowledge about the biological functions of β-amyloid precursor protein .  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号