首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1371篇
  免费   81篇
  国内免费   2篇
  2022年   9篇
  2021年   15篇
  2020年   11篇
  2019年   13篇
  2018年   17篇
  2017年   25篇
  2016年   44篇
  2015年   68篇
  2014年   51篇
  2013年   86篇
  2012年   110篇
  2011年   112篇
  2010年   67篇
  2009年   75篇
  2008年   90篇
  2007年   91篇
  2006年   73篇
  2005年   68篇
  2004年   70篇
  2003年   60篇
  2002年   49篇
  2001年   38篇
  2000年   43篇
  1999年   25篇
  1998年   14篇
  1997年   10篇
  1996年   9篇
  1995年   4篇
  1994年   6篇
  1992年   9篇
  1991年   10篇
  1990年   6篇
  1989年   9篇
  1988年   8篇
  1987年   11篇
  1986年   6篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   4篇
  1977年   3篇
  1976年   4篇
  1974年   2篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
  1968年   1篇
排序方式: 共有1454条查询结果,搜索用时 1 毫秒
161.
162.
In the present study, we investigated neuronal death/damage in the gerbil hippocampal CA1 region (CA1) and compared changes in some trophic factors, such as brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF), in the CA1 between the adult and young gerbils after 5?min of transient cerebral ischemia. Most of pyramidal neurons (89?%) were damaged 4?days after ischemia?Creperfusion (I?CR) in the adult; however, in the young, about 59?% of pyramidal neurons were damaged 7?days after I?CR. The immunoreactivity and levels of BDNF and VEGF, not GDNF, in the CA1 of the normal young were lower than those in the normal adult. Four days after I?CR in the adult group, the immunoreactivity and levels of BDNF and VEGF were distinctively decreased, and the immunoreactivity and level of GDNF were increased. However, in the young group, all of their immunoreactivities and levels were much higher than those in the normal young group. From 7?days after I?CR, all the immunoreactivities and levels were apparently decreased compared to those of the normal adult and young. In brief, we confirmed our recent finding: more delayed and less neuronal death occurred in the young following I?CR, and we newly found that the immunoreactivities of trophic factors, such as BDNF, GDNF, and VEGF, in the stratum pyramidale of the CA1 in the young gerbil were much higher than those in the adult gerbil 4?days after transient cerebral ischemia.  相似文献   
163.
Amyloid-β-42 (Aβ42) has been implicated in the pathogenesis of Alzheimer's disease (AD). Neuronal Aβ42 expression induces apoptosis and decreases survival and locomotive activity in Drosophila. However, the mechanism by which Aβ42 induces these neuronal impairments is unclear. In this study, we investigated the underlying pathway in theses impairments. JNK activity was increased in Aβ42-expressing brains, and the Aβ42-induced defects were rescued by reducing JNK or caspase activity through genetic modification or pharmacological treatment. In addition, these impairments were restored by Drosophila forkhead box subgroup O (dFOXO) deficiency. These results suggest that the JNK/dFOXO pathway confers a therapeutic potential for AD.  相似文献   
164.
Matrix metalloproteinase-2 (MMP-2) functions in diverse biological processes through the degradation of extracellular and non-extracellular matrix molecules. Because of its potential for tissue damage, there are several ways to regulate MMP-2 activity, including gene expression, compartmentalization, zymogen activation, and enzyme inactivation by extracellular inhibitors. Enzyme regulation through zymogen activation is important for the regulation of MMP-2 activity. In our previous studies, we showed that thrombin directly cleaved the propeptide of MMP-2 at specific sites for enzyme activation. We also demonstrated that heparan sulfate was required for thrombin-mediated activation of pro-MMP-2 by binding to thrombin, presumably through conformational changes at the active site of the enzyme. This suggests a regulatory mechanism for thrombin-mediated activation of pro-MMP-2. In this study, we found that MMP-2 formed a reduction-sensitive homodimer in a controlled manner and that Ca(2+) ion was essential for homodimerization of MMP-2. Homodimerization was not associated with protein kinase C-mediated phosphorylation of MMP-2. MMP-2 formed a homodimer through an intermolecular disulfide bond between Cys(102) and the neighboring Cys(102). Homodimerization of MMP-2 enhanced thrombin-mediated activation of pro-MMP-2. Moreover, the MMP-2 homodimer could cleave a small peptide substrate without removal of the propeptide. Taken together, our experimental data suggest a novel regulatory mechanism for pro-MMP-2 activation that is modulated through homodimerization of MMP-2.  相似文献   
165.
Seaweed resources can be used as raw materials to produce bioethanol, a renewable biofuel, to overcome fossil fuel depletion and environmental problems. Red seaweeds possess high amount of bioethanol-producible carbohydrates. Among 55 species tested, the carrageenophyte Kappaphycus alvarezii (also known as cottonii) was selected as the best resource for bioethanol production. This species is one of the most abundant and easily cultured red seaweeds. The main components of carrageenan are d-galactose-4-sulfate and 3,6-anhydro-d-galactose-2-sulfate, which are potentially fermentable d-typed carbohydrates. The seaweed powder was hydrolyzed with 0.2?M sulfuric acid and fermented with brewer’s yeast. The ethanol yield from the K. alvarezii hydrolysate was 0.21?g?g?1-galactose, which corresponded to a 41% theoretical yield. It revealed a relative ethanol production of 66% comparing to that of pure galactose.  相似文献   
166.
Increased plasma total antioxidant capacity (TAC) has been associated with a high consumption of fruits and vegetables. However, limited information is available on whether plasma TAC reflects the dietary intake of antioxidants and the levels of individual antioxidants in plasma. By using three different assays, the study aimed to determine if plasma TAC can effectively predict dietary intake of antioxidants and plasma antioxidant status. Forty overweight and apparently healthy postmenopausal women were recruited. Seven-day food records and 12-h fasting blood samples were collected for dietary and plasma antioxidant assessments. Plasma TAC was determined by vitamin C equivalent antioxidant capacity (VCEAC), ferric-reducing ability of plasma (FRAP) and oxygen radical absorbance capacity (ORAC) assays. TAC values determined by VCEAC were highly correlated with FRAP (r=0.79, P<.01) and moderately correlated with ORAC (r=0.34, P<.05). Pearson correlation analyses showed that plasma TAC values by VCEAC and ORAC had positive correlation with plasma uric acid (r=0.56 for VCEAC; r=0.49 for ORAC) and total phenolics (r=0.63 for VCEAC; r=0.36 for ORAC). However, TAC measured by FRAP was correlated only with uric acid (r=0.69). After multivariate adjustment, plasma TAC determined by VCEAC was positively associated with dietary intakes of γ-tocopherol (P<.001), β-carotene (P<.05), anthocyanidins (P<.05), flavones (P<.05), proanthocyanidins (P<.01) and TAC (P<.05), as well as with plasma total phenolics (P<.05), α-tocopherol (P<.001), β-cryptoxanthin (P<.05) and uric acid (P<.05). The findings indicate that plasma TAC measured by VCEAC reflects both dietary and plasma antioxidants and represents more closely the plasma antioxidant levels than ORAC and FRAP.  相似文献   
167.
Cucumber, Cucumis sativus L. is the only taxon with 2n = 2x = 14 chromosomes in the genus Cucumis. It consists of two cross‐compatible botanical varieties: the cultivated C. sativus var. sativus and the wild C. sativus var. hardwickii. There is no consensus on the evolutionary relationship between the two taxa. Whole‐genome sequencing of the cucumber genome provides a new opportunity to advance our understanding of chromosome evolution and the domestication history of cucumber. In this study, a high‐density genetic map for cultivated cucumber was developed that contained 735 marker loci in seven linkage groups spanning 707.8 cM. Integration of genetic and physical maps resulted in a chromosome‐level draft genome assembly comprising 193 Mbp, or 53% of the 367 Mbp cucumber genome. Strategically selected markers from the genetic map and draft genome assembly were employed to screen for fosmid clones for use as probes in comparative fluorescence in situ hybridization analysis of pachytene chromosomes to investigate genetic differentiation between wild and cultivated cucumbers. Significant differences in the amount and distribution of heterochromatins, as well as chromosomal rearrangements, were uncovered between the two taxa. In particular, six inversions, five paracentric and one pericentric, were revealed in chromosomes 4, 5 and 7. Comparison of the order of fosmid loci on chromosome 7 of cultivated and wild cucumbers, and the syntenic melon chromosome I suggested that the paracentric inversion in this chromosome occurred during domestication of cucumber. The results support the sub‐species status of these two cucumber taxa, and suggest that C. sativus var. hardwickii is the progenitor of cultivated cucumber.  相似文献   
168.
169.
The molecular mechanisms underlying myogenic satellite cells (MSCs) differentiation into myotube-formed cells (MFCs) and transdifferentiation into adipocyte-like cells (ALCs) are unclear. As a step towards understanding the molecular mechanisms underlying MSC differentiation and transdifferentiation, we attempted to identify the genes differentially expressed during differentiation and transdifferentiation using gene microarray analysis (GMA). Thirty oligonucleotide arrays were used with two technical replicates and nine and six biological replicates for MFCs vs. MSCs and ALCs vs. MSCs, respectively, to contrast expression profile differences. GMA identified 1,224 differentially expressed genes by at least 2-fold during differentiation and transdifferentiation of MSCs. To select the highly expressed genes for future functional study, genes with a 4-fold expression difference were selected for validation by real time RT-PCR and approximately 96.9% of the genes were validated. The up-regulation of marker genes for myogenesis (MYL2, MYH3) and adipogenesis (PPAR??, and FABP4) was observed during the differentiation and transdifferentiation of MSCs into MFCs and ALCs, respectively. KOG analysis revealed that the most of the genes up-regulated during differentiation and transdifferentiation of MSCs were related to signal transduction. Again the exact location of 109 differentially expressed genes by 4-fold were analyzed by chromosome mapping. Among those, co-localization of 29 genes up-regulated during transdifferentiation with QTL for marbling score and intramuscular fat percentage supports the involvement of these genes in cellular transdifferentiation. Interestingly, some genes with unknown function were also identified during the process. Functional studies on these genes may unfold the molecular mechanisms controlling MSC differentiation and transdifferentiation.  相似文献   
170.
Neurodegeneration associated with amyloid β (Aβ) peptide accumulation, synaptic loss, neuroinflammation, tauopathy, and memory impairments encompass the pathophysiological features of Alzheimer's disease (AD). We previously reported that the scaffolding protein RanBP9, which is overall increased in brains of AD patients, simultaneously promotes Aβ generation and focal adhesion disruption by accelerating the endocytosis of amyloid precursor protein (APP) and β1-integrin, respectively. Here, we show that RanBP9 protein levels are increased by fourfold in FAD mutant APP transgenic mice. Accordingly, RanBP9 transgenic mice demonstrate significantly increased synapse loss, neurodegeneration, gliosis, and spatial memory deficits. RanBP9 overexpression promotes apoptosis and potentiates Aβ-induced neurotoxicity independent of its capacity to promote Aβ generation. Conversely, RanBP9 reduction by siRNA or gene dosage mitigates Aβ-induced neurotoxicity. Importantly, RanBP9 activates/dephosphorylates cofilin, a key regulator of actin dynamics and mitochondria-mediated apoptosis, and siRNA knockdown of cofilin abolishes both Aβ and RanBP9-induced apoptosis. These findings implicate the RanBP9-cofilin pathway as critical therapeutic targets not only for stemming Aβ generation but also antagonizing Aβ-induced neurotoxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号