首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   10篇
  121篇
  2023年   1篇
  2021年   13篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   5篇
  2016年   3篇
  2015年   4篇
  2014年   6篇
  2013年   6篇
  2012年   12篇
  2011年   6篇
  2010年   4篇
  2009年   7篇
  2008年   7篇
  2007年   11篇
  2006年   9篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1990年   1篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有121条查询结果,搜索用时 0 毫秒
41.
Lake Lanier is an important freshwater lake for the southeast United States, as it represents the main source of drinking water for the Atlanta metropolitan area and is popular for recreational activities. Temperate freshwater lakes such as Lake Lanier are underrepresented among the growing number of environmental metagenomic data sets, and little is known about how functional gene content in freshwater communities relates to that of other ecosystems. To better characterize the gene content and variability of this freshwater planktonic microbial community, we sequenced several samples obtained around a strong summer storm event and during the fall water mixing using a random whole-genome shotgun (WGS) approach. Comparative metagenomics revealed that the gene content was relatively stable over time and more related to that of another freshwater lake and the surface ocean than to soil. However, the phylogenetic diversity of Lake Lanier communities was distinct from that of soil and marine communities. We identified several important genomic adaptations that account for these findings, such as the use of potassium (as opposed to sodium) osmoregulators by freshwater organisms and differences in the community average genome size. We show that the lake community is predominantly composed of sequence-discrete populations and describe a simple method to assess community complexity based on population richness and evenness and to determine the sequencing effort required to cover diversity in a sample. This study provides the first comprehensive analysis of the genetic diversity and metabolic potential of a temperate planktonic freshwater community and advances approaches for comparative metagenomics.  相似文献   
42.
43.
In recent years, high throughput screening (HTS) studies have been increasingly employed as an integral element of bioprocess development activities. These studies are often limited by an analytical bottleneck; they generate multiple samples for analysis and the available analytical methods cannot always cope with the added analytical burden. A potential solution to this challenge is offered by the deployment of appropriate analytics. This article outlines features of analytical methods that affect their fit to high throughput (HT) applications. These are discussed for a range of analytics frequently used in bioprocess development studies of monoclonal antibodies. It then outlines how these features need to be considered in order to classify analytical methods in terms of their particular application in high throughput scenarios. Biotechnol. Bioeng. 2013; 110: 1924–1935. © 2013 Wiley Periodicals, Inc.  相似文献   
44.
Recent advances in sequencing technology and bioinformatic pipelines have allowed unprecedented access to the genomes of yet-uncultivated microorganisms from diverse environments. However, the catalogue of freshwater genomes remains limited, and most genome recovery attempts in freshwater ecosystems have only targeted specific taxa. Here, we present a genome recovery pipeline incorporating iterative subtractive binning, and apply it to a time series of 100 metagenomic datasets from seven connected lakes and estuaries along the Chattahoochee River (Southeastern USA). Our set of metagenome-assembled genomes (MAGs) represents >400 yet-unnamed genomospecies, substantially increasing the number of high-quality MAGs from freshwater lakes. We propose names for two novel species: ‘Candidatus Elulimicrobium humile’ (‘Ca. Elulimicrobiota’, ‘Patescibacteria’) and ‘Candidatus Aquidulcis frankliniae’ (‘Chloroflexi’). Collectively, our MAGs represented about half of the total microbial community at any sampling point. To evaluate the prevalence of these genomospecies in the chronoseries, we introduce methodologies to estimate relative abundance and habitat preference that control for uneven genome quality and sample representation. We demonstrate high degrees of habitat-specialization and endemicity for most genomospecies in the Chattahoochee lakes. Wider ecological ranges characterized smaller genomes with higher coding densities, indicating an overall advantage of smaller, more compact genomes for cosmopolitan distributions.  相似文献   
45.
The ranks higher than the species in the prokaryotic taxonomy are primarily designated based on phylogenetic analysis of the 16S rRNA gene sequences, but no definite standards exist for the absolute relatedness (measured by 16S rRNA or other means) between the ranks. Accordingly, it remains unknown how comparable the ranks are between different organisms. To gain insights into this question, we studied the relationship between shared gene content and genetic relatedness for 175 fully sequenced strains, using as a robust measure of relatedness the average amino acid identity (AAI) of the shared genes. Our results reveal that adjacent ranks (e.g., phylum versus class) frequently show extensive overlap in terms of genetic and gene content relatedness of the grouped organisms, and hence, the current system is of limited predictive power in this respect. The overlap between nonadjacent ranks (e.g., phylum versus family) is generally limited and attributable to clear inconsistencies of the taxonomy. In addition to providing means for standardizing taxonomy, our AAI-based approach provides a means to evaluate the robustness of alternative genetic markers for phylogenetic purposes. For instance, the 23S rRNA gene was found to be as good a marker as the 16S rRNA gene, while several of the widely distributed protein-coding genes, such as the RNA polymerase and gyrase subunits, show a strong phylogenetic signal, albeit less strong than the rRNA genes (0.78 > R2 > 0.69 for the protein-coding genes versus R2 = 0.84 for the rRNA genes). The AAI approach outlined here could contribute significantly to a genome-based taxonomy for all microbial organisms.  相似文献   
46.
47.
The bacterial species definition, despite its eminent practical significance for identification, diagnosis, quarantine and diversity surveys, remains a very difficult issue to advance. Genomics now offers novel insights into intra-species diversity and the potential for emergence of a more soundly based system. Although we share the excitement, we argue that it is premature for a universal change to the definition because current knowledge is based on too few phylogenetic groups and too few samples of natural populations. Our analysis of five important bacterial groups suggests, however, that more stringent standards for species may be justifiable when a solid understanding of gene content and ecological distinctiveness becomes available. Our analysis also reveals what is actually encompassed in a species according to the current standards, in terms of whole-genome sequence and gene-content diversity, and shows that this does not correspond to coherent clusters for the environmental Burkholderia and Shewanella genera examined. In contrast, the obligatory pathogens, which have a very restricted ecological niche, do exhibit clusters. Therefore, the idea of biologically meaningful clusters of diversity that applies to most eukaryotes may not be universally applicable in the microbial world, or if such clusters exist, they may be found at different levels of distinction.  相似文献   
48.
Konstantinidis, P. and Johnson, G. David 2012. Ontogeny of the jaw apparatus and suspensorium of the Tetraodontiformes. —Acta Zoologica (Stockholm) 93 : 351–366. The jaw apparatus and suspensorium of adult Tetraodontiformes are well adapted to a durophagous feeding habit. Anatomical indicators are the short, stout jaws and a suspensorium in which the quadrate lies in the same vertical plane as the autopalatine. In contrast, the palatoquadrate of larval Tetraodontiformes generally resembles that of larval percomorphs – a more posteriorly positioned quadrate and a slender and long Meckelian cartilage. Among Tetraodontiformes, the Triacanthodidae retain a protrusible upper jaw and a versatile suspensorium. The jaws of the Balistoidei have greater mobility achieved by a reduced autopalatine that has lost its bony contact with the suspensorium. In contrast to the Balistoidei, the beak‐like jaws of the Tetraodontoidei lack individual teeth in the biting part of the jaws. The autopalatine is enlarged, which results in immobilization of the ethmopalatine articulation. The Ostraciidae are exceptional in having the distal part of the autopalatine reduced, while the proximal part remains attached to the suspensorium.  相似文献   
49.
50.
Whether or not bacterial species exist remains an unresolved issue of paramount theoretical as well as practical consequences. Here we review and synthesize the findings emerging from metagenomic surveys of natural microbial populations and argue that microbial communities are predominantly organized in genetically and ecologically discernible populations, which possess the attributes expected for species. These sequence-discrete populations represent a major foundation for beginning high-resolution investigations on how populations are organized, interact, and evolve within communities. We also attempt to reconcile these findings with those of previous studies that reported indiscrete species and a genetic continuum within bacterial taxa and discuss the implications for the current bacterial species definition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号