首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2883篇
  免费   310篇
  国内免费   1篇
  3194篇
  2022年   42篇
  2021年   66篇
  2020年   28篇
  2019年   48篇
  2018年   62篇
  2017年   44篇
  2016年   75篇
  2015年   143篇
  2014年   139篇
  2013年   151篇
  2012年   181篇
  2011年   190篇
  2010年   112篇
  2009年   138篇
  2008年   139篇
  2007年   142篇
  2006年   127篇
  2005年   133篇
  2004年   137篇
  2003年   125篇
  2002年   109篇
  2001年   56篇
  2000年   47篇
  1999年   50篇
  1998年   26篇
  1997年   18篇
  1996年   23篇
  1995年   27篇
  1994年   29篇
  1993年   14篇
  1992年   28篇
  1991年   34篇
  1990年   20篇
  1989年   30篇
  1988年   24篇
  1987年   20篇
  1986年   19篇
  1985年   18篇
  1984年   27篇
  1983年   19篇
  1982年   30篇
  1981年   13篇
  1979年   19篇
  1976年   18篇
  1975年   17篇
  1974年   17篇
  1973年   21篇
  1972年   16篇
  1971年   14篇
  1969年   19篇
排序方式: 共有3194条查询结果,搜索用时 15 毫秒
131.
This work describes the microwave assisted synthesis of twelve novel histamine H3 receptor ligands. They display pyrrolo[2,3-d]pyrimidine derivatives with rigidized aliphatic amines as warheads. The compounds were screened for H3R and H4R binding affinities in radioligand displacement assays and the most potent compounds were evaluated for H3R binding properties in vitro and in docking studies. The combination of a rigidized H3R warhead and the pyrrolo[2,3-d]pyrimidine scaffold resulted in selective activity at the H3 receptor with a pKi value of 6.90 for the most potent compound. A bipiperidine warhead displayed higher affinity than a piperazine or morpholine motif, while a naphthyl moiety in the arbitrary region increased affinity compared to a phenyl derivative. The compounds can be starting points for novel, simply synthesized histamine H3 receptor ligands.  相似文献   
132.
Planar lipid membranes in the presence of the ion carriers valinomycin or nonactin were irradiated with 14 MeV electrons from a linear accelerator. A large increase of the membrane conductance by up to more than two orders of magnitude was found. The effect is virtually abolished either at high pH, or in the absence of oxygen, or in the presence of the radical scavenger ethanol. A further prerequisite for the effect is the presence of unsaturated fatty acid residues. A kinetic analysis of the carrier transport model based on current-voltage curves and on voltage-jump relaxation experiments was performed as a function of radiation dose. Only the translocation rate constant, kMS, of the charged carrier-ion complex was found to be influenced by irradiation. The effect is interpreted as an increase of the polarity (dielectric constant) of the membrane interior induced by the presence of polar products of lipid peroxidation. A combined action of OH- and HO2-radicals seems to be responsible for the phenomena. At large radiation doses (greater than or equal to 10(3) Gy) a reduction of the membrane conductance was observed. This is interpreted as an increased microviscosity, possibly caused by cross-linking of fatty acid residues. Ion carriers represent sensitive probes of radiation induced membrane damage.  相似文献   
133.
The replication protein ORF904 from the plasmid pRN1 is a multifunctional enzyme with ATPase-, primase- and DNA polymerase activity. Sequence analysis suggests the presence of at least two conserved domains: an N-terminal prim/pol domain with primase and DNA polymerase activities and a C-terminal superfamily 3 helicase domain with a strong double-stranded DNA dependant ATPase activity. The exact molecular function of the helicase domain in the process of plasmid replication remains unclear. Potentially this motor protein is involved in duplex remodelling and/or origin opening at the plasmid replication origin. In support of this we found that the monomeric replication protein ORF904 forms a hexameric ring in the presence of DNA. It is able to translocate along single-stranded DNA in 3′–5′ direction as well as on double-stranded DNA. Critical residues important for ATPase activity and DNA translocation activity were identified and are in agreement with a homology model of the helicase domain. In addition we propose that a winged helix DNA-binding domain at the C-terminus of the helicase domain could assist the binding of the replication protein specifically to the replication origin.  相似文献   
134.
Intercellular adhesion strengthening, a phenomenon that compromises the texture and the edible quality of potatoes (Solanum tuberosum L.), has been induced reproducibly by exposure to low-pH acetic acid solutions under tissue culture conditions. The resulting parenchyma tissues have been examined by solid-state nuclear magnetic resonance (NMR) in order to characterize the biopolymer(s) thought to be associated with this syndrome. Cross polarization-magic angle spinning (CPMAS) (13)C NMR has been used to establish the presence of a polyphenol-suberin-like aromatic-aliphatic polyester within an abundant cell wall polysaccharide matrix in potato tubers that exhibit hardening due to strengthened intercellular adhesion. Dipolar dephasing and CP chemical shift anisotropy experiments suggest that the aromatic domain is composed primarily of guaiacyl and sinapyl groups. Two-dimensional wide-line separation experiments show that the biopolymer associated with parenchyma hardening contains rigid polysaccharide cell walls and mobile aliphatic long-chain fatty acids; (1)H spin diffusion experiments show that these flexible aliphatic chains are proximal to both the phenolics and a subpopulation of the cell wall polysaccharides. Finally, high-resolution MAS NMR of parenchyma samples swelled in DMSO in conjunction with two-dimensional through-bond and through-space NMR spectroscopy provides evidence for covalent linkages among the polysaccharide, phenolic, and aliphatic domains of the intercellular adhesion-strengthening biopolymer in potato parenchyma tissue.  相似文献   
135.
The WHO recommends complete withdrawal of oral polio vaccine (OPV) type 2 by April 2016 globally and replacing with at least one dose of inactivated poliovirus vaccine (IPV). However, high‐cost, limited supply of IPV, persistent circulating vaccine‐derived polioviruses transmission and need for subsequent boosters remain unresolved. To meet this critical need, a novel strategy of a low‐cost cold chain‐free plant‐made viral protein 1 (VP1) subunit oral booster vaccine after single IPV dose is reported. Codon optimization of the VP1 gene enhanced expression by 50‐fold in chloroplasts. Oral boosting of VP1 expressed in plant cells with plant‐derived adjuvants after single priming with IPV significantly increased VP1‐IgG1 and VP1‐IgA titres when compared to lower IgG1 or negligible IgA titres with IPV injections. IgA plays a pivotal role in polio eradication because of its transmission through contaminated water or sewer systems. Neutralizing antibody titres (~3.17–10.17 log2 titre) and seropositivity (70–90%) against all three poliovirus Sabin serotypes were observed with two doses of IPV and plant‐cell oral boosters but single dose of IPV resulted in poor neutralization. Lyophilized plant cells expressing VP1 stored at ambient temperature maintained efficacy and preserved antigen folding/assembly indefinitely, thereby eliminating cold chain currently required for all vaccines. Replacement of OPV with this booster vaccine and the next steps in clinical translation of FDA‐approved antigens and adjuvants are discussed.  相似文献   
136.
Melatonin is a natural mammalian hormone that plays an important role in regulating the circadian cycle in humans. It is a clinically effective drug exhibiting positive effects as a sleep aid and a powerful antioxidant used as a dietary supplement. Commercial melatonin production is predominantly performed by complex chemical synthesis. In this study, we demonstrate microbial production of melatonin and related compounds, such as serotonin and N‐acetylserotonin. We generated Saccharomyces cerevisiae strains that comprise heterologous genes encoding one or more variants of an L‐tryptophan hydroxylase, a 5‐hydroxy‐L‐tryptophan decarboxylase, a serotonin acetyltransferase, an acetylserotonin O‐methyltransferase, and means for providing the cofactor tetrahydrobiopterin via heterologous biosynthesis and recycling pathways. We thereby achieved de novo melatonin biosynthesis from glucose. We furthermore accomplished increased product titers by altering expression levels of selected pathway enzymes and boosting co‐factor supply. The final yeast strain produced melatonin at a titer of 14.50 ± 0.57 mg L?1 in a 76h fermentation using simulated fed‐batch medium with glucose as sole carbon source. Our study lays the basis for further developing a yeast cell factory for biological production of melatonin.  相似文献   
137.
Serine integrases, DNA site-specific recombinases used by bacteriophages for integration and excision of their DNA to and from their host genomes, are increasingly being used as tools for programmed rearrangements of DNA molecules for biotechnology and synthetic biology. A useful feature of serine integrases is the simple regulation and unidirectionality of their reactions. Recombination between the phage attP and host attB sites is promoted by the serine integrase alone, giving recombinant attL and attR sites, whereas the ‘reverse’ reaction (between attL and attR) requires an additional protein, the recombination directionality factor (RDF). Here, we present new experimental data on the kinetics and regulation of recombination reactions mediated by ϕC31 integrase and its RDF, and use these data as the basis for a mathematical model of the reactions. The model accounts for the unidirectionality of the attP × attB and attL × attR reactions by hypothesizing the formation of structurally distinct, kinetically stable integrase–DNA product complexes, dependent on the presence or absence of RDF. The model accounts for all the available experimental data, and predicts how mutations of the proteins or alterations of reaction conditions might increase the conversion efficiency of recombination.  相似文献   
138.
Type II restriction-modification (R-M) systems encode a restriction endonuclease that cleaves DNA at specific sites, and a methyltransferase that modifies same sites protecting them from restriction endonuclease cleavage. Type II R-M systems benefit bacteria by protecting them from bacteriophages. Many type II R-M systems are plasmid-based and thus capable of horizontal transfer. Upon the entry of such plasmids into a naïve host with unmodified genomic recognition sites, methyltransferase should be synthesized first and given sufficient time to methylate recognition sites in the bacterial genome before the toxic restriction endonuclease activity appears. Here, we directly demonstrate a delay in restriction endonuclease synthesis after transformation of Escherichia coli cells with a plasmid carrying the Esp1396I type II R-M system, using single-cell microscopy. We further demonstrate that before the appearance of the Esp1396I restriction endonuclease the intracellular concentration of Esp1396I methyltransferase undergoes a sharp peak, which should allow rapid methylation of host genome recognition sites. A mathematical model that satisfactorily describes the observed dynamics of both Esp1396I enzymes is presented. The results reported here were obtained using a functional Esp1396I type II R-M system encoding both enzymes fused to fluorescent proteins. Similar approaches should be applicable to the studies of other R-M systems at single-cell level.  相似文献   
139.
Many longitudinal studies of aging collect genetic information only for a sub-sample of participants of the study. These data also do not include recent findings, new ideas and methodological concepts developed by distinct groups of researchers. The formal statistical analyses of genetic data ignore this additional information and therefore cannot utilize the entire research potential of the data. In this paper, we present a stochastic model for studying such longitudinal data in joint analyses of genetic and non-genetic sub-samples. The model incorporates several major concepts of aging known to date and usually studied independently. These include age-specific physiological norms, allostasis and allostatic load, stochasticity, and decline in stress resistance and adaptive capacity with age. The approach allows for studying all these concepts in their mutual connection, even if respective mechanisms are not directly measured in data (which is typical for longitudinal data available to date). The model takes into account dependence of longitudinal indices and hazard rates on genetic markers and permits evaluation of all these characteristics for carriers of different alleles (genotypes) to address questions concerning genetic influence on aging-related characteristics. The method is based on extracting genetic information from the entire sample of longitudinal data consisting of genetic and non-genetic sub-samples. Thus it results in a substantial increase in the accuracy of statistical estimates of genetic parameters compared to methods that use only information from a genetic sub-sample. Such an increase is achieved without collecting additional genetic data. Simulation studies illustrate the increase in the accuracy in different scenarios for datasets structurally similar to the Framingham Heart Study. Possible applications of the model and its further generalizations are discussed.  相似文献   
140.
Following exposure to various stresses (arsenite, UV, hyperthermia, and hypoxia), mRNAs are assembled into large cytoplasmic bodies known as “stress granules,” in which mRNAs and associated proteins may be processed by specific enzymes for different purposes like transient storing, sorting, silencing, or other still unknown processes. To limit mRNA damage during stress, the assembly of micrometric granules has to be rapid, and, indeed, it takes only ∼10–20 min in living cells. However, such a rapid assembly breaks the rules of hindered diffusion in the cytoplasm, which states that large cytoplasmic bodies are almost immobile. In the present work, using HeLa cells and YB-1 protein as a stress granule marker, we studied three hypotheses to understand how cells overcome the limitation of hindered diffusion: shuttling of small messenger ribonucleoprotein particles from small to large stress granules, sliding of messenger ribonucleoprotein particles along microtubules, microtubule-mediated stirring of large stress granules. Our data favor the two last hypotheses and underline that microtubule dynamic instability favors the formation of micrometric stress granules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号