首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4995篇
  免费   391篇
  国内免费   257篇
  5643篇
  2024年   9篇
  2023年   60篇
  2022年   142篇
  2021年   231篇
  2020年   160篇
  2019年   192篇
  2018年   185篇
  2017年   117篇
  2016年   215篇
  2015年   310篇
  2014年   332篇
  2013年   354篇
  2012年   434篇
  2011年   413篇
  2010年   238篇
  2009年   229篇
  2008年   276篇
  2007年   247篇
  2006年   207篇
  2005年   159篇
  2004年   149篇
  2003年   149篇
  2002年   118篇
  2001年   95篇
  2000年   81篇
  1999年   66篇
  1998年   31篇
  1997年   43篇
  1996年   54篇
  1995年   28篇
  1994年   26篇
  1993年   23篇
  1992年   45篇
  1991年   29篇
  1990年   21篇
  1989年   18篇
  1988年   23篇
  1987年   18篇
  1986年   13篇
  1985年   14篇
  1984年   8篇
  1983年   19篇
  1982年   9篇
  1981年   8篇
  1980年   6篇
  1979年   4篇
  1977年   5篇
  1975年   5篇
  1973年   3篇
  1965年   3篇
排序方式: 共有5643条查询结果,搜索用时 31 毫秒
81.
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. To date, the molecular mechanisms of DN remain largely unclear. The present study aimed to identify and characterize novel proteins involved in the development of DN by a proteomic approach. Proteomic analysis revealed that 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase 2 (HMGCS2), the key enzyme in ketogenesis, was increased fourfold in the kidneys of type 2 diabetic db/db mice. Consistently, the activity of HMGCS2 in kidneys and 24-h urinary excretion of the ketone body β-hydroxybutyrate (β-HB) were significantly increased in db/db mice. Immunohistochemistry, immunofluorescence, and real-time PCR studies further demonstrated that HMGCS2 was highly expressed in renal glomeruli of db/db mice, with weak expression in the kidneys of control mice. Because filtered ketone bodies are mainly reabsorbed in the proximal tubules, we used RPTC cells, a rat proximal tubule cell line, to examine the effect of the increased level of ketone bodies. Treating cultured RPTC cells with 1 mM β-HB significantly induced transforming growth factor-β1 expression, with a marked increase in collagen I expression. β-HB treatment also resulted in a marked increase in vimentin protein expression and a significant reduction in E-cadherin protein levels, suggesting an enhanced epithelial-to-mesenchymal transition in RPTCs. Collectively, these findings demonstrate that diabetic kidneys exhibit excess ketogenic activity resulting from increased HMGCS2 expression. Enhanced ketone body production in the diabetic kidney may represent a novel mechanism involved in the pathogenesis of DN.  相似文献   
82.
Autophagy is a self-digestion process that degrades intracellular structures in response to stresses leading to cell survival. When autophagy is prolonged, this could lead to cell death. Generation of reactive oxygen species (ROS) through oxidative stress causes cell death. The role of autophagy in oxidative stress-induced cell death is unknown. In this study, we report that two ROS-generating agents, hydrogen peroxide (H(2)O(2)) and 2-methoxyestradiol (2-ME), induced autophagy in the transformed cell line HEK293 and the cancer cell lines U87 and HeLa. Blocking this autophagy response using inhibitor 3-methyladenine or small interfering RNAs against autophagy genes, beclin-1, atg-5 and atg-7 inhibited H(2)O(2) or 2-ME-induced cell death. H(2)O(2) and 2-ME also induced apoptosis but blocking apoptosis using the caspase inhibitor zVAD-fmk (benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone) failed to inhibit autophagy and cell death suggesting that autophagy-induced cell death occurred independent of apoptosis. Blocking ROS production induced by H(2)O(2) or 2-ME through overexpression of manganese-superoxide dismutase or using ROS scavenger 4,5-dihydroxy-1,3-benzene disulfonic acid-disodium salt decreased autophagy and cell death. Blocking autophagy did not affect H(2)O(2)- or 2-ME-induced ROS generation, suggesting that ROS generation occurs upstream of autophagy. In contrast, H(2)O(2) or 2-ME failed to significantly increase autophagy in mouse astrocytes. Taken together, ROS induced autophagic cell death in transformed and cancer cells but failed to induce autophagic cell death in non-transformed cells.  相似文献   
83.
Previous study has shown that thiazolidinediones (TZDs) improved endothelium insulin resistance (IR) induced by high glucose concentration (HG)/hyperglycaemia through a PPARγ‐dependent‐NFκB trans‐repression mechanism. However, it is unclear, whether changes in PPARγ expression affect the endothelium IR and what the underlying mechanism is. In the present study, we aimed to address this issue. HG‐treated human umbilical vascular endothelial cells (HUVEC) were transfected by either PPARγ‐overexpressing (Ad‐PPARγ) or PPARγ‐shRNA‐containing (Ad‐PPARγ‐shRNA) adenoviral vectors. Likewise, the rats fed by high‐fat diet (HFD) were infected by intravenous administration of Ad‐PPARγ or Ad‐PPARγ‐shRNA. The levels of nitric oxide (NO), endothelin‐1 (ET‐1) and cytokines (TNFα, IL‐6, sICAM‐1 and sVCAM‐1) and the expression levels of PPARγ, eNOS, AKT, p‐AKT, IKKα/β and p‐IKKα/β and IκBα were examined; and the interaction between PPARγ and NFκB‐P65 as well as vascular function were evaluated. Our present results showed that overexpression of PPARγ notably increased the levels of NO, eNOS, p‐AKT and IκBα as well as the interaction of PPARγ and NFκB‐P65, and decreased the levels of ET‐1, p‐IKKα/β, TNFα, IL‐6, sICAM‐1 and sVCAM‐1. In contrast, down‐expression of PPARγ displayed the opposite effects. The results demonstrate that the overexpression of PPARγ improves while the down‐expression worsens the endothelium IR via a PPARγ‐mediated NFκB trans‐repression dependent manner. The findings suggest PPARγ is a potential therapeutic target for diabetic vascular complications.  相似文献   
84.
Kong L  Ge BX 《Cell research》2008,18(7):745-755
Phagocytosis and subsequent degradation of pathogens by macrophages play a pivotal role in host innate immune responses to microbial infection. Recent studies have shown that Toll-like receptors (TLRs) play an important role in promoting the clearance of bacteria by up-regulating the phagocytic activity of macrophages. However, information regarding the signaling mechanism of TLR-mediated phagocytosis is still limited. Here, we provide evidence that the stimulation of TLR4 with LPS leads to activation of multiple signaling pathways including MAP kinases, phosphatidylinositide 3-kinase (PI3K), and small GTPases in the murine macrophage-like cell line RAW264.7. Specific inhibition of Cdc42/Rac or p38 MAP kinase, but not PI3K, reduced TLR4-induced phagocytosis of bacteria. Moreover, we have found that either inhibition of actin polymerization by cytochalasin D or the knockdown of actin by RNAi markedly reduced the activation of Cdc42 and Rac by LPS. TLR4-induced activation of Cdc42 and Rac appears to be independent of MyD88. Taken together, our results described a novel actin-Cdc42/Rac pathway through which TLRs can specifically provoke phagocytosis.  相似文献   
85.
Fatty acid binding protein 3 (FABP3) (also known as H-FABP) is a member of the intracellular lipid-binding protein family, and is mainly expressed in cardiac muscle tissue. The in vivo function of FABP3 is proposed to be in fatty acid metabolism, trafficking, and cell signaling. Our previous study found that FABP3 is highly regulated in patients with ventricular septal defect (VSD), and may play a significant role in the development of human VSD. In the present study, we aimed to investigate the impact of FABP3 knockdown by RNA interference (RNAi) on apoptosis and mitochondrial function of embryonic carcinoma (P19) cells. The results revealed that downregulated FABP3 expression promoted apoptosis, and resulted in mitochondrial deformation, increased mitochondrial membrane potential (MMP), and decreased intracellular ATP synthesis. In addition, the knockdown of FABP3 also led to excess intracellular ROS production. However, there was no obvious influence on the amount of mitochondrial DNA. Collectively, our results indicated that FABP3 knockdown promoted apoptosis and caused mitochondrial dysfunction in P19 cells, which might be responsible for the development of human VSD.  相似文献   
86.
Cardiovascular diseases, including myocardial infarction (MI) and stroke, most often occur on the background of atherosclerosis, a condition attributed to the interactions between multiple genetic and environmental risk factors. We recently reported a linkage and association study of MI and stroke that yielded a genetic variant, HapA, in the gene encoding 5-lipoxygenase-activating protein (ALOX5AP), that associates with both diseases in Iceland. We also described another ALOX5AP variant, HapB, that associates with MI in England. To further assess the contribution of the ALOX5AP variants to cardiovascular diseases in a population outside Iceland, we genotyped seven single-nucleotide polymorphisms that define both HapA and HapB from 450 patients with ischemic stroke and 710 controls from Aberdeenshire, Scotland. The Icelandic at-risk haplotype, HapA, had significantly greater frequency in Scottish patients than in controls. The carrier frequency in patients and controls was 33.4% and 26.4%, respectively, which resulted in a relative risk of 1.36, under the assumption of a multiplicative model (P=.007). We did not detect association between HapB and ischemic stroke in the Scottish cohort. However, we observed that HapB was overrepresented in male patients. This replication of haplotype association with stroke in a population outside Iceland further supports a role for ALOX5AP in cardiovascular diseases.  相似文献   
87.
[目的]肠道是动物的主要消化器官,同时也是机体抵抗外源病原菌的重要屏障,已有研究表明,动物的品种、饲养方式、生长阶段均会影响动物的肠道菌群结构,但对舍饲和放牧饲养条件下藏猪的肠道菌群结构,以及藏猪和长白、约克与杜洛克三元杂交猪(DLY猪)的肠道菌群结构是否有差异,尚未见报道.[方法]本研究选取6-7月龄的放牧藏猪、舍饲...  相似文献   
88.
油菜细胞质雄性不育系叶绿体DNA特异片段的分子克隆   总被引:7,自引:0,他引:7  
采用高离子浓度缓冲液法分别提取油菜不育系及保持系的叶绿体DNA。经Sepharcse 4B柱层析纯化后,得到具有较高纯度的叶绿体DNA样品。将其分别用Eco RI、Bam HI、HimdHI、PstI和XhoI 5种限制性内切酶酶解,得到5种限制性内切酶图谱。其中除PstI图谱外,其它4种酶谱均显示出明显的两系间叶绿体DNA结构差异。以pBR 322为载体,分别克隆了不育系Bam HI图谱上的3个特异片段。得到的3个克隆,经克隆杂交及电泳分析后,证实分别带有上述3个目的片段。这些特异片段的特性及其与花粉育性的关系尚在研究中。  相似文献   
89.
Platelet-derived growth factor-D (PDGF-D) can regulate many cellular processes, including cell proliferation, apoptosis, transformation, migration, invasion, angiogenesis and metastasis. Therefore PDGF-D signaling has been considered to be important in human malignancies, and thus PDGF-D signaling may represent a novel therapeutic target, and as such suggests that the development of agents that will target PDGF-D signaling is likely to have a significant therapeutic impact on human cancers. This mini-review describes the mechanisms of signal transduction associated with PDGF-D signaling to support the role of PDGF-D in the carcinogenesis. Moreover, we summarize data on several PDGF-D inhibitors especially naturally occurring “chemopreventive agent” such an indole compound, which we believe could serve as a novel agent for the prevention of tumor progression and/or treatment of human malignancies by targeted inactivation of PDGF-D signaling.  相似文献   
90.
本文就 PHA 在不同时间内对小鼠白细胞及血清 LDH,同工酶的影响进行了观察,结果表明,PHA 对小鼠白细胞及血清的 LDH 酶活性有一定的影响,24h,48h,72h 三个不同时间组均与对照组有显著性差异(P<0.01),其中以48h 组酶活性最强,同时淋巴细胞的酶活性明显高于粒细胞;血清同工酶谱也有明显的变化,LDH_(1-4)均低于正常(P<0.01),LDH_5明显增高(P<0.01),同时出现了 LDH_5(?)亚带.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号