全文获取类型
收费全文 | 1061篇 |
免费 | 93篇 |
专业分类
1154篇 |
出版年
2023年 | 2篇 |
2022年 | 7篇 |
2021年 | 19篇 |
2020年 | 10篇 |
2019年 | 17篇 |
2018年 | 23篇 |
2017年 | 23篇 |
2016年 | 33篇 |
2015年 | 48篇 |
2014年 | 48篇 |
2013年 | 60篇 |
2012年 | 79篇 |
2011年 | 86篇 |
2010年 | 49篇 |
2009年 | 38篇 |
2008年 | 63篇 |
2007年 | 58篇 |
2006年 | 60篇 |
2005年 | 73篇 |
2004年 | 77篇 |
2003年 | 53篇 |
2002年 | 48篇 |
2001年 | 23篇 |
2000年 | 15篇 |
1999年 | 23篇 |
1998年 | 13篇 |
1997年 | 2篇 |
1996年 | 6篇 |
1995年 | 5篇 |
1994年 | 5篇 |
1993年 | 5篇 |
1992年 | 11篇 |
1991年 | 14篇 |
1990年 | 13篇 |
1989年 | 6篇 |
1988年 | 6篇 |
1987年 | 12篇 |
1986年 | 4篇 |
1985年 | 2篇 |
1984年 | 3篇 |
1983年 | 4篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 2篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1974年 | 1篇 |
排序方式: 共有1154条查询结果,搜索用时 15 毫秒
21.
Prosaposin Facilitates Sciatic Nerve Regeneration In Vivo 总被引:3,自引:0,他引:3
Yasunori Kotani Seiji Matsuda Masahiro Sakanaka Keiji Kondoh Shu-ichi Ueno Akira Sano 《Journal of neurochemistry》1996,66(5):2019-2025
Abstract: Prosaposin, a multifunctional protein, is the precursor of saposins, which activate sphingolipid hydrolases. In addition to acting as a precursor for saposins, prosaposin has been shown to rescue hippocampal CA1 neurons from lethal ischemic damage in vivo and to promote neurite extension of neuroblastoma cells in vitro. Here we show that prosaposin, when added to a collagen-filled nerve guide after sciatic nerve transection in guinea pigs, increased dramatically the number of regenerating nerve fibers within the guide. To identify the target neurons of prosaposin during peripheral nerve regeneration, we determined the degree of atrophy and chromatolysis of neurons in the spinal anterior horn and dorsal root ganglia on the prosaposin-treated and untreated side. The effect of prosaposin on large spinal neurons and small neurons of the dorsal root ganglion was more conspicuous. Subsequent immunohistochemistry demonstrated that the atrophy of cholinergic large neurons in the anterior horn is prevented to significant extent by prosaposin treatment. These findings suggest that prosaposin promotes peripheral nerve regeneration by acting on α-motor neurons in the anterior horn and on small sensory neurons in the dorsal root ganglion. The present study raises the possibility of using prosaposin as a tool for the treatment of peripheral nerve injuries. 相似文献
22.
Adam M. Sullivan Xiaopeng Zhao Yasuhiro Suzuki Eri Ochiai Stephen Crutcher Michael A. Gilchrist 《PLoS computational biology》2013,9(11)
Toxoplasma gondii establishes a chronic infection by forming cysts preferentially in the brain. This chronic infection is one of the most common parasitic infections in humans and can be reactivated to develop life-threatening toxoplasmic encephalitis in immunocompromised patients. Host-pathogen interactions during the chronic infection include growth of the cysts and their removal by both natural rupture and elimination by the immune system. Analyzing these interactions is important for understanding the pathogenesis of this common infection. We developed a differential equation framework of cyst growth and employed Akaike Information Criteria (AIC) to determine the growth and removal functions that best describe the distribution of cyst sizes measured from the brains of chronically infected mice. The AIC strongly support models in which T. gondii cysts grow at a constant rate such that the per capita growth rate of the parasite is inversely proportional to the number of parasites within a cyst, suggesting finely-regulated asynchronous replication of the parasites. Our analyses were also able to reject the models where cyst removal rate increases linearly or quadratically in association with increase in cyst size. The modeling and analysis framework may provide a useful tool for understanding the pathogenesis of infections with other cyst producing parasites. 相似文献
23.
Diacylglycerol kinase (EC 2.7.1.-) was purified 1,650-fold from pig brain cytosol. The purified enzyme showed a single protein band on polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate. The molecular weight of the kinase was estimated to be 78,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A similar value (76,000) was obtained by Sephadex G-150 gel filtration. The activity of the purified enzyme was markedly enhanced by either deoxycholate or phospholipids. The extent of activation by phospholipids was in the order of phosphatidylcholine greater than lysophosphatidylcholine greater than phosphatidylethanolamine approximately equal to phosphatidylserine greater than sphingomyelin. Other phospholipids and unsaturated fatty acids were ineffective. Phosphatidylcholines from egg yolk and pig brain, and dioleoyl phosphatidylcholine were similarly effective. Saturated phosphatidylcholines with acyl chain lengths shorter than palmitate also gave a considerable activation. The activity with phosphatidylcholine was from 1.5- to 2.5-fold higher than that measured with deoxycholate. A very small amount of phosphatidylinositol or phosphatidylglycerol potently inhibited the phosphatidylcholine-dependent (but not deoxycholate-dependent) kinase activity. The inhibition by phosphatidylinositol was varied according to its molar ratio to phosphatidylcholine. As little as about 2.5 mol per cent of phosphatidylinositol resulted in 50% inhibition of the phosphatidylcholine-dependent kinase activity. The deoxycholate- and phosphatidylcholine-dependent kinase activities showed almost the same Km values for the substrates. In both cases, the apparent Km values for ATP and diacylglycerol were 300 microM and about 60 microM, respectively. The kinase required Mg2+ for its activity. When compared to deoxycholate, phosphatidylcholine was more effective at higher Mg2+ concentrations. The deoxycholate-dependent activity showed a broad pH optimum at around 8.0, whereas the phosphatidylcholine-dependent activity formed a clear peak at pH 7.4. 相似文献
24.
An alginate lyase, termed HdAly in the present paper, was isolated from the hepatopancreas of abalone, Haliotis discus hannai, by ammonium sulfate fractionation, followed by TOYOPEARL CM-650M column chromatography. Enzymatic properties of HdAly were similar to those of previously reported Haliotis and Turbo poly(M) lyases, e.g., it preferentially degraded a poly(beta-D-mannuronate)-rich substrate with an optimal pH and temperature at pH 8.0 and 45 degrees C, respectively. In order to determine the primary structure of abalone lyase that is still poorly understood, cDNAs for HdAly were cloned by PCR from the abalone hepatopancreas cDNA library and sequenced. From the nucleotide sequences of the cDNAs, the sequence of 909 bp in total was determined, and the amino acid sequence of 273 residues was deduced from the translational region of 822 bp locating at nucleotide positions 27-848. The N-terminal region of 16 residues, except for the initiation Met in the deduced sequence, was regarded as the signal peptide since it was absent in the HdAly protein and showed high similarity to the consensus sequence for signal peptides of eukaryote secretary proteins. This suggests that HdAly is initially produced as a precursor possessing the signal peptide in hepatopancreatic cells and then secreted into digestive tract as the mature form. Thus, the mature HdAly was regarded to consist of 256 residues with the calculated molecular mass of 28895.5 Da. The amino acid sequence of HdAly showed 85 and 28% identity to those of Turbo cornutus alginate lyase SP2 and the C-terminal region of Chlorella virus lyase-like protein CL2, respectively, while it showed no significant identity to those of any bacterial alginate lyases. In order to provide the basis for the structure-function studies and various applications of the abalone lyase, a bacterial expression system was constructed by means of the HdAly-cDNA and pET-3a expression plasmid. Although the active recombinant HdAly was hardly produced at a cultivation temperature 37 degrees C in Escherichia coli BL21 (DE3), a small amount of soluble and active enzyme could be produced when the temperature was lowered to 19 degrees C. 相似文献
25.
Hiroya Miyamoto Eri Katsuyama Yoshiteru Miyauchi Hiroko Hoshi Kana Miyamoto Yuiko Sato Tami Kobayashi Ryotaro Iwasaki Shigeyuki Yoshida Tomoaki Mori Hiroya Kanagawa Atsuhiro Fujie Wu Hao Hideo Morioka Morio Matsumoto Yoshiaki Toyama Takeshi Miyamoto 《The Journal of biological chemistry》2012,287(39):32479-32484
26.
Haruhiro Toko Nirmala Hariharan Mathias H. Konstandin Lucia Ormachea Michael McGregor Natalie A. Gude Balaji Sundararaman Eri Joyo Anya Y. Joyo Brett Collins Shabana Din Sadia Mohsin Takafumi Uchida Mark A. Sussman 《The Journal of biological chemistry》2014,289(9):5348-5356
Autologous c-kit+ cardiac progenitor cells (CPCs) are currently used in the clinic to treat heart disease. CPC-based regeneration may be further augmented by better understanding molecular mechanisms of endogenous cardiac repair and enhancement of pro-survival signaling pathways that antagonize senescence while also increasing differentiation. The prolyl isomerase Pin1 regulates multiple signaling cascades by modulating protein folding and thereby activity and stability of phosphoproteins. In this study, we examine the heretofore unexplored role of Pin1 in CPCs. Pin1 is expressed in CPCs in vitro and in vivo and is associated with increased proliferation. Pin1 is required for cell cycle progression and loss of Pin1 causes cell cycle arrest in the G1 phase in CPCs, concomitantly associated with decreased expression of Cyclins D and B and increased expression of cell cycle inhibitors p53 and retinoblastoma (Rb). Pin1 deletion increases cellular senescence but not differentiation or cell death of CPCs. Pin1 is required for endogenous CPC response as Pin1 knock-out mice have a reduced number of proliferating CPCs after ischemic challenge. Pin1 overexpression also impairs proliferation and causes G2/M phase cell cycle arrest with concurrent down-regulation of Cyclin B, p53, and Rb. Additionally, Pin1 overexpression inhibits replicative senescence, increases differentiation, and inhibits cell death of CPCs, indicating that cell cycle arrest caused by Pin1 overexpression is a consequence of differentiation and not senescence or cell death. In conclusion, Pin1 has pleiotropic roles in CPCs and may be a molecular target to promote survival, enhance repair, improve differentiation, and antagonize senescence. 相似文献
27.
Efficient modification of the myostatin gene in porcine somatic cells and generation of knockout piglets 下载免费PDF全文
28.
Nishi Y Fujimoto S Sasaki M Mukai E Sato H Sato Y Tahara Y Nakamura Y Inagaki N 《The Biochemical journal》2011,435(2):421-430
In pancreatic β-cells, glucose-induced mitochondrial ATP production plays an important role in insulin secretion. The mitochondrial phosphate carrier PiC is a member of the SLC25 (solute carrier family 25) family and transports Pi from the cytosol into the mitochondrial matrix. Since intramitochondrial Pi is an essential substrate for mitochondrial ATP production by complex V (ATP synthase) and affects the activity of the respiratory chain, Pi transport via PiC may be a rate-limiting step for ATP production. We evaluated the role of PiC in metabolism-secretion coupling in pancreatic β-cells using INS-1 cells manipulated to reduce PiC expression by siRNA (small interfering RNA). Consequent reduction of the PiC protein level decreased glucose (10 mM)-stimulated insulin secretion, the ATP:ADP ratio in the presence of 10 mM glucose and elevation of intracellular calcium concentration in response to 10 mM glucose without affecting the mitochondrial membrane potential (Δψm) in INS-1 cells. In experiments using the mitochondrial fraction of INS-1 cells in the presence of 1 mM succinate, PiC down-regulation decreased ATP production at various Pi concentrations ranging from 0.001 to 10 mM, but did not affect Δψm at 3 mM Pi. In conclusion, the Pi supply to mitochondria via PiC plays a critical role in ATP production and metabolism-secretion coupling in INS-1 cells. 相似文献
29.
Miyako Kondoh Noritaka Ohga Kosuke Akiyama Yasuhiro Hida Nako Maishi Alam Mohammad Towfik Nobuo Inoue Masanobu Shindoh Kyoko Hida 《PloS one》2013,8(11)
There is much evidence that hypoxia in the tumor microenvironment enhances tumor progression. In an earlier study, we reported abnormal phenotypes of tumor-associated endothelial cells such as those resistant to chemotherapy and chromosomal instability. Here we investigated the role of hypoxia in the acquisition of chromosomal abnormalities in endothelial cells. Tumor-associated endothelial cells isolated from human tumor xenografts showed chromosomal abnormalities, >30% of which were aneuploidy. Aneuploidy of the tumor-associated endothelial cells was also shown by simultaneous in-situ hybridization for chromosome 17 and by immunohistochemistry with anti-CD31 antibody for endothelial staining. The aneuploid cells were surrounded by a pimonidazole-positive area, indicating hypoxia. Human microvascular endothelial cells expressed hypoxia-inducible factor 1 and vascular endothelial growth factor A in response to either hypoxia or hypoxia-reoxygenation, and in these conditions, they acquired aneuploidy in 7 days. Induction of aneuploidy was inhibited by either inhibition of vascular endothelial growth factor signaling with vascular endothelial growth factor receptor 2 inhibitor or by inhibition of reactive oxygen species by N-acetyl-L-cysteine. These results indicate that hypoxia induces chromosomal abnormalities in endothelial cells through the induction of reactive oxygen species and excess signaling of vascular endothelial growth factor in the tumor microenvironment. 相似文献
30.
Tumbling chemotaxis mutants of Escherichia coli: possible gene-dependent effect of methionine starvation. 总被引:1,自引:6,他引:1 下载免费PDF全文
H Kondoh 《Journal of bacteriology》1980,142(2):527-534
Some mutants defective in chemotaxis show incessant tumbling behavior and are called tumbling mutants. Previously described tumbling mutations lie in two genes, cheB and cheZ (41.5 min on Escherichia coli map). Genetic analysis of various tumbling mutants, however, revealed that two more genetic loci, cheC (43 min) and cheE (99.2 min), could also mutate to produce tumbling mutants. The genetic map around cheC was revised: his flaP flaQ flaR flbD flaA (= cheC) flaE. flbD is a new gene. When cells were starved for methionine, the tumbling mutants changed their swimming behavior depending on the che gene mutated. cheZ mutants, like wild-type bacteria, ceased tumbling shortly after removal of methionine. The tumbling of cheB or cheE mutants was depressed after prolonged methionine starvation in the presence of a constant level of an attractant. cheC tumbling mutants appeared unique in that they did not cease tumbling even when cells were deprived of methionine. By contrast, arsenate treatment of the tumbling mutants resulted in smooth swimming of the cells in every case. These results suggest that two different processes are involved in regulation of tumbling; one requiring methionine and the other requiring some phosphorylated compound. 相似文献