首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3587篇
  免费   265篇
  2022年   20篇
  2021年   32篇
  2019年   26篇
  2018年   44篇
  2017年   42篇
  2016年   65篇
  2015年   82篇
  2014年   88篇
  2013年   196篇
  2012年   170篇
  2011年   193篇
  2010年   111篇
  2009年   111篇
  2008年   152篇
  2007年   142篇
  2006年   148篇
  2005年   102篇
  2004年   152篇
  2003年   135篇
  2002年   134篇
  2001年   111篇
  2000年   122篇
  1999年   105篇
  1998年   48篇
  1997年   41篇
  1996年   49篇
  1995年   40篇
  1994年   34篇
  1993年   37篇
  1992年   94篇
  1991年   100篇
  1990年   76篇
  1989年   80篇
  1988年   81篇
  1987年   53篇
  1986年   44篇
  1985年   48篇
  1984年   46篇
  1983年   34篇
  1982年   38篇
  1981年   32篇
  1980年   23篇
  1979年   58篇
  1978年   31篇
  1977年   36篇
  1976年   22篇
  1975年   31篇
  1974年   32篇
  1973年   20篇
  1972年   25篇
排序方式: 共有3852条查询结果,搜索用时 15 毫秒
991.

Background  

The filamentous fungus T. reesei effectively degrades cellulose and is known to produce various cellulolytic enzymes such as β-glucosidase, endoglucanase, and cellobiohydrolase. The expression levels of each cellulase are controlled simultaneously, and their ratios and synergetic effects are important for effective cellulose degradation. However, in recombinant Saccharomyces cerevisiae, it is difficult to simultaneously control many different enzymes. To construct engineered yeast with efficient cellulose degradation, we developed a simple method to optimize cellulase expression levels, named cocktail δ-integration.  相似文献   
992.
The low‐density lipoprotein receptor‐related protein 1 (LRP1) is known as an endocytic and signal transmission receptor. We formerly reported the gene expression and the localization of LRP1 in cartilage tissue and chondrocytes, but its roles in the differentiation of chondrocytes remained to be investigated. Here, in order to address this issue, we employed RNAi strategy to knockdown lrp1 in chondrocytic cells and obtained findings indicating a critical role therein. As a result of lrp1 knockdown, aggrecan and col2a1 mRNA levels were decreased. However, that of col10a1 or mmp13 mRNA was rather increased. Under this condition, we performed a promoter assay for Axin2, which is known to be induced by activation of the WNT/β‐catenin (βcat) signaling pathway. Thereby, we found that Axin2 promoter activity was enhanced in the lrp1 knockdown cells. Furthermore, when the WNT/β–catenin pathway was activated in chondrocytic cells by WNT3a or SB216763, which inhibits the phosphorylation of GSK3β, the mRNA levels of aggrecan and col2a1 were decreased, whereas that of mmp13 was increased. Additionally, the level of phosphorylated protein kinase C (PKC) ζ was also decreased in the lrp1 knockdown cells. When the phosphorylation of PKCζ was selectively inhibited, aggrecan and col2a1 mRNA levels decreased, whereas the mmp13 mRNA level increased. These data demonstrate that LRP1 exerts remarkable effects to retain the mature phenotype of chondrocytes as a critical mediator of cell signaling. Our findings also indicate that the onset of hypertrophy during endochondral ossification appears to be particularly dependent on the WNT and PKC signaling initiated by LRP1. J. Cell. Physiol. 222:138–148, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
993.
Many germ line antibodies have asparagine residues at specific sites to achieve specific antigen recognition. To study the role of asparagine residues in the stabilization of antigen-antibody complexes, we examined the interaction between hen egg white lysozyme (HEL) and the corresponding HyHEL-10 variable domain fragment (Fv). We introduced Ala and Asp substitutions into the Fv side chains of l-Asn-31, l-Asn-32, and l-Asn-92, which interact directly with residues in HEL via hydrogen bonding in the wild-type Fv-HEL complex, and we investigated the interactions between these mutant antibodies and HEL. Isothermal titration calorimetric analysis showed that all the mutations decreased the negative enthalpy change and decreased the association constants of the interaction. Structural analyses showed that the effects of the mutations on the structure of the complex could be compensated for by conformational changes and/or by gains in other interactions. Consequently, the contribution of two hydrogen bonds was minor, and their abolition by mutation resulted in only a slight decrease in the affinity of the antibody for its antigen. By comparison, the other two hydrogen bonds buried at the interfacial area had large enthalpic advantage, despite entropic loss that was perhaps due to stiffening of the interface by the bonds, and were crucial to the strength of the interaction. Deletion of these strong hydrogen bonds could not be compensated for by other structural changes. Our results suggest that asparagine can provide the two functional groups for strong hydrogen bond formation, and their contribution to the antigen-antibody interaction can be attributed to their limited flexibility and accessibility at the complex interface.  相似文献   
994.
Myeloperoxidase (MPO) generates reactive halogenating species that can modify DNA. The aim of this study was to investigate the formation of 8-halogenated 2′-deoxyguanosines (8- halo-dGs) during inflammatory events. 8-Bromo-2′-dG (8-BrdG) and 8-chloro-2′-dG (8-CldG) were generated by treatment of MPO with hydrogen peroxide at physiological concentrations of Cl and Br. The formation of 8-halo-dGs with other oxidative stress biomarkers in lipopolysaccharide-treated rats was assessed by liquid chromatography tandem mass spectrometry and immunohistochemistry using a novel monoclonal antibody (mAb8B3) to 8-BrdG-conjugated keyhole limpet hemocyanin. The antibody recognized both 8-BrdG and 8-CldG. In the liver of lipopolysaccharide-treated rats, immunostaining for 8-halo-dGs, halogenated tyrosines, and MPO were increased at 8 h, whereas those of 8-oxo-2′-dG (8-OxodG) and 3-nitrotyrosine were increased at 24 h. Urinary excretion of both 8-CldG and 8-BrdG was also observed earlier than those of 8-OxodG and modified tyrosines (3-nitrotyrosine, 3-chlorotyrosine, and 3- bromotyrosine). Moreover, the levels of the 8-halo-dGs in urine from human diabetic patients were 8-fold higher than in healthy subjects (n = 10, healthy and diabetic, p < 0.0001), whereas there was a moderate difference in 8-OxodG between the two groups (p < 0.001). Interestingly, positive mAb8B3 antibody staining was observed in liver tissue from hepatocellular carcinoma patients but not in liver tissue from human cirrhosis patients. These data suggest that 8-halo-dGs may be potential biomarkers of early inflammation.  相似文献   
995.
996.

Background

Each of the pathogenic human retroviruses (HIV-1/2 and HTLV-1) has a nonhuman primate counterpart, and the presence of these retroviruses in humans results from interspecies transmission. The passage of another simian retrovirus, simian foamy virus (SFV), from apes or monkeys to humans has been reported. Mandrillus sphinx, a monkey species living in central Africa, is naturally infected with SFV. We evaluated the natural history of the virus in a free-ranging colony of mandrills and investigated possible transmission of mandrill SFV to humans.

Results

We studied 84 semi-free-ranging captive mandrills at the Primate Centre of the Centre International de Recherches Médicales de Franceville (Gabon) and 15 wild mandrills caught in various areas of the country. The presence of SFV was also evaluated in 20 people who worked closely with mandrills and other nonhuman primates. SFV infection was determined by specific serological (Western blot) and molecular (nested PCR of the integrase region in the polymerase gene) assays. Seropositivity for SFV was found in 70/84 (83%) captive and 9/15 (60%) wild-caught mandrills and in 2/20 (10%) humans. The 425-bp SFV integrase fragment was detected in peripheral blood DNA from 53 captive and 8 wild-caught mandrills and in two personnel. Sequence and phylogenetic studies demonstrated the presence of two distinct strains of mandrill SFV, one clade including SFVs from mandrills living in the northern part of Gabon and the second consisting of SFV from animals living in the south. One man who had been bitten 10 years earlier by a mandrill and another bitten 22 years earlier by a macaque were found to be SFV infected, both at the Primate Centre. The second man had a sequence close to SFVmac sequences. Comparative sequence analysis of the virus from the first man and from the mandrill showed nearly identical sequences, indicating genetic stability of SFV over time.

Conclusion

Our results show a high prevalence of SFV infection in a semi-free-ranging colony of mandrills, with the presence of two different strains. We also showed transmission of SFV from a mandrill and a macaque to humans.  相似文献   
997.
998.
999.

Background

Stem cell factor (SCF) receptor c-Kit is recognized as a key signaling molecule, which transduces signals for the proliferation, differentiation and survival of stem cells. Binding of SCF to its receptor triggers transactivation, leading to the recruitment of kinases and phosphatases to the docking platforms of c-Kit catalytic domain. Tyrosine phosphatase-1 (Shp-1) deactivates/attenuates 'Kit' kinase activity. Whereas, Asp816Val mutation in the Kit activation loop transforms kinase domain to a constitutively activated state (switch off-to-on state), in a ligand-independent manner. This phenomenon completely abrogates negative regulation of Shp-1. To predict the possible molecular basis of interaction between c-Kit and Shp-1, we have performed an in silico protein-protein docking study between crystal structure of activated c-Kit (phosphorylated c-Kit) and full length crystal structure of Shp-2, a close structural counterpart of Shp-1.

Findings

Study revealed a stretch of conserved amino acids (Lys818 to Ser821) in the Kit activation domain, which makes decisive H-bonds with N-sh2 and phosphotyrosine binding pocket residues of the phosphatase. These H-bonds may impose an inhibitory steric hindrance to the catalytic domain of c-Kit, there by blocking further interaction of the activation loop molecules with incoming kinases. We have also predicted a phosphotyrosine binding pocket in SH2 domains of Shp-1, which is found to be predominantly closer to a catalytic groove like structure in c-Kit kinase domain.

Conclusions

This study predicts that crucial hydrogen bonding between N-sh2 domain of Shp-1 and Kit activation loop can modulate the negative regulation of c-Kit kinase by Shp-1. Thus, this finding is expected to play a significant role in designing suitable gain-of-function c-Kit mutants for inducing conditional proliferation of hematopoietic stem cells.  相似文献   
1000.
Many tiny yellow poppies are grown in the town area of Rishiri Island, Japan. Because the phenotype of this cultivated poppy is similar to that of Papaver fauriei, which is endemic to Mt. Rishiri, Rishiri Island, residents on the island call the cultivated poppy “P. fauriei” although the origin of the cultivated poppy is uncertain. To estimate the origin of the cultivated poppy, its internal transcribed spacer (ITS) sequence was compared with those found in the Far East wild poppies P. fauriei, P. alboroseum, P. miyabeanum and P. nudicaule. Although the ITS sequence of the cultivated poppy was not identical to those found in the wild species, it was most similar to that of P. miyabeanum, indicating that the cultivated poppy is not P. fauriei. However, cultivated poppy seeds have been sown several times over a period of at least 20 years in wild P. fauriei habitats on Mt. Rishiri in the hope of aiding the recovery of P. fauriei populations in wild habitats. Poppy plants in the wild habitats where such seeds have been sown showed the same ITS sequences as those of the cultivated poppy, indicating that the cultivated poppy is established in these wild habitats. This is a case of a nonindigenous species being introduced to wild habitats through human actions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号