首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3587篇
  免费   265篇
  2022年   20篇
  2021年   32篇
  2019年   26篇
  2018年   44篇
  2017年   42篇
  2016年   65篇
  2015年   82篇
  2014年   88篇
  2013年   196篇
  2012年   170篇
  2011年   193篇
  2010年   111篇
  2009年   111篇
  2008年   152篇
  2007年   142篇
  2006年   148篇
  2005年   102篇
  2004年   152篇
  2003年   135篇
  2002年   134篇
  2001年   111篇
  2000年   122篇
  1999年   105篇
  1998年   48篇
  1997年   41篇
  1996年   49篇
  1995年   40篇
  1994年   34篇
  1993年   37篇
  1992年   94篇
  1991年   100篇
  1990年   76篇
  1989年   80篇
  1988年   81篇
  1987年   53篇
  1986年   44篇
  1985年   48篇
  1984年   46篇
  1983年   34篇
  1982年   38篇
  1981年   32篇
  1980年   23篇
  1979年   58篇
  1978年   31篇
  1977年   36篇
  1976年   22篇
  1975年   31篇
  1974年   32篇
  1973年   20篇
  1972年   25篇
排序方式: 共有3852条查询结果,搜索用时 15 毫秒
81.
Structural and serological studies were performed with the lipopolysaccharide (LPS) expressed by Escherichia coli K12 strains No. 30 and No. 64, into which cosmid clones derived from Vibrio cholerae O1 NIH 41 (Ogawa) and NIH 35A3 (Inaba) had been introduced, respectively. The two recombinant strains, No. 30 (Ogawa) and No. 64 (Inaba), produced LPS that included, in common, the O-polysaccharide chain composed of an α(1 → 2)-linked N-(3-deoxy-L -glycero-tetronyl)-D -perosamine (4-amino-4,6-dideoxy-D -manno-pyranose) homopolymer attached to the core oligosaccharide of the LPS of E. coli K12. Structural analysis revealed the presence of N-(3-deoxy-L -glycero-tetronyl)-2-O-methyl-D -perosamine at the non-reducing terminus of the O-polysaccharide chain of LPS from No. 30 (Ogawa) but not from No. 64 (Inaba). Serological analysis revealed that No. 30 (Ogawa) and No. 64 (Inaba) LPS were found to share the group antigen factor A of V. cholerae O1. They were distinguished by presence of the Ogawa antigen factor B [co-existing with relatively small amounts of the Inaba antigen factor (c)] in the former LPS and the Inaba antigen factor C in the latter LPS. It appears, therefore, that No. 30 (Ogawa) and No. 64 (Inaba) have O-antigenic structures that are fully consistent with the AB(c) structure for the Ogawa and the AC structure for the Inaba O-forms of V. cholerae O1, respectively. Thus, the present study clearly confirmed our previous finding that the Ogawa antigenic factor B is substantially related to the 2-O-methyl group at the non-reducing terminus of the α(1 → 2)-linked N-(3-deoxy-L -glycero-tetronyl)-D -perosamine homopolymer that forms the O-polysaccharide chain of LPS of V. cholerae O1 (Ogawa).  相似文献   
82.
K. ARIHARA, S. OGIHARA, T. MUKAI, M. ITOH AND Y. KONDO. 1996. Fifteen of 353 environmental isolates of lactic acid bacteria consistently showed activity against Listeria monocytogenes, Streptococcus mutans, Actinomyces viscosus , and/or Propionibacterium acnes . Strain T140, isolated from the surface of Japanese pampas grass leaves and identified as Lactobacillus salivarius subsp. salicinius , also had activity against several Lactobacillus species, Staphylococcus aureus and Yersinia enterocolitica . Since the antagonistic factor(s) produced by T140 was sensitive to a proteolytic enzyme, it was concluded that a bacteriocin (named salivacin 140) was involved in the inhibition activity. Strain T140 required a high initial pH (7.5–8.5) in agar plates for bacteriocin production.  相似文献   
83.
The rate of evolution of ethylene by tomato plants was rapidlyincreased by O3 fumigation. The time course of the increasein 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activitywas the same as that in the rate of evolution of ethylene, suggestingthat ACC synthase activity might be a rate-limiting step inthe evolution of ethylene that is caused by O3 fumigation. Therate of the O3-induced evolution of ethylene was increased bythe application of ACC to tomato plants, suggesting the involvementof ACC oxidase in the O3-induced evolution of ethylene. Treatmentof plants with tiron inhibited the evolution of ethane, butnot of ethylene. These results indicated that evolution of ethylenein O3-treated tomato plants might result from enzymatic reactionscatalyzed by both ACC synthase and ACC oxidase, but not fromstimulation by O3 of the peroxidation of lipids mediated byfree radicals. Pretreatment of leaves with aminoethoxyvinylglycine (AVG), aninhibitor of ACC synthase, significantly inhibited the evolutionof ethylene that was induced by O3 and concomitantly reducedthe extent of O3-induced visible damage to leaves. Treatmentwith 2,5-norbonadiene, an inhibitor of the action of ethylene,strongly reduced the extent of visible damage caused by O3,even though it did not suppress the evloution of ethylene. Theseresults indicate that ethylene acts on certain metabolic processesto cause visible damage. (Received September 7, 1995; Accepted December 18, 1995)  相似文献   
84.
Photoinduced lesions in DNA, namely, cyclobutane pyrimidinedimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproducts[(6-4)photoproducts], in cucumber cotyledons that had been irradiatedwith naturally occurring levels of UV-B (290–320 nm) werequantitated by enzyme-linked immunosorbent assays with monoclonalantibodies specific to each type of photolesion. Induction ofthese photolesions was dependent on temperature and their extentwas reduced by simultaneous irradiation with white light. Thedark repair of both types of photolesion was undetectable. Light-dependentremoval of (6-4)photoproducts was very slow, with 50% removalin 4 h. By contrast, 50% of initial CPDs were removed within15 min. Both photorepair processes were dependent on the intensityof white light and were sensitive to temperature. These resultsindicate that high photolyase activity is present in cucumbercotyledons and that repair activities in cucumber cotyledonsare different from those reported in Arabidopsis, in which (6-4)photoproductsare photorepaired more rapidly than CPDs. (Received October 13, 1995; Accepted December 28, 1995)  相似文献   
85.
The polypeptide encoded by the partial fragment of cDNA of phenylalanine ammonia-lyase (PAL; EC 4.3.1.5), PALcDNAl (Osakabe et al., 1995, Plant Sci. 105: 217–226), isolated from Populus kitakamiensis (P. sieboldii x P. grandidentata), was expressed in Escherichia coli cells. The polypeptide was purified and an antiserum raised against it. The antiserum recognized a protein of 77 kDa on nitrocellulose blots after sodium dodecyl sulfate-poly-acrylamide gel electrophoresis of total protein and the partially purified PAL protein from P. kitakamiensis. Moreover,the antiserum recognized a protein on the blot after non-denaturing polyacrylamide gel electrophoresis of P. kitakamiensis proteins and this protein had PAL activity. Furthermore, the antibody inhibited PAL activity of extracts from stem tissues. These results showed that the antiserum against the partial PAL peptide recognized only the PAL subunits in extracts of P. kitakamiensis. Immunolocalization studies of P. kitakamiensis tissues revealed that the PAL protein was specifically localized in the xylem and the phloem fibers and no immunogold signal was found in the epidermis, the cortex, the pith, or the cambium of either stems or leaves.Abbreviations IgG immunoglobulin G - IPTG isopropylthio--d-galactoside - PAL phenylalanine ammonia-lyase The authors thank Dr. Kunio Hata of Nippon Paper Industries Co., Ltd. (Japan) for supplying P. kitakamiensis. This work was supported in part by a grant-in-aid for Scientific Research from the Ministry of Education, Science and Culture of Japan (No. 07406008).  相似文献   
86.
Peroxisome-biogenesis disorders (PBD) are genetically heterogeneous and can be classified into at least ten complementation groups. We recently isolated the cDNA for rat peroxisome assembly factor-2 (PAF-2) by functional complementation using the peroxisome-deficient Chinese-hamster-ovary cell mutant, ZP92. To clarify the novel pathogenic gene of PBD, we cloned the full-length human PAF-2 cDNA that morphologically and biochemically restores peroxisomes of group C Zellweger fibroblasts (the same as group 4 in the Kennedy-Krieger Institute) and identified two pathogenic mutations in the PAF-2 gene in two patients with group C Zellweger syndrome. The 2,940-bp open reading frame of the human PAF-2 cDNA encodes a 980-amino-acid protein that shows 87.1% identity with rat PAF-2 and also restored the peroxisome assembly after gene transfer to fibroblasts of group C patients. Direct sequencing of the PAF-2 gene revealed a homozygous 1-bp insertion at nucleotide 511 (511 insT) in one patient with group C Zellweger syndrome (ZS), which introduces a premature termination codon in the PAF-2 gene, and, in the second patient, revealed a splice-site mutation in intron 3 (IVS3+1G-->A), which skipped exon 3, an event that leads to peroxisome deficiency. Chromosome mapping utilizing FISH indicates that PAF-2 is located on chromosome 6p21.1. These results confirm that human PAF-2 cDNA restores peroxisome of group C cells and that defects in the PAF-2 produce peroxisome deficiency of group C PBD.  相似文献   
87.
Cnidium officinale Makino is important medicinally and economically, but its origin is uncertain. The phylogenetic relationship ofC. officinale is provided from the analyses based on the ribulose-1,5-bisphosphate carboxylase/oxgenase gene (rbcL) sequences of 41 species which represent the 34 genera of Aplaceae, the four genera of Araliaceae, and one genus each of Pittosporaceae, Cornaceae, and Caprifoliaceae. The strict consensus tree obtained supports a close relationship ofC. officinale to the Chinese members ofLigusticum, especially toL. chuanxiong. Additionally, the tree shows (1) polyphyly of the genusLigusticum and (2) monophyly of the subfamily Apioideae. Within Apioideae, we recognized some groups in our phylogenetic tree. The grouping is discordant in several respects with the traditional tribal divisions based mainly on fruit morphology.  相似文献   
88.
89.
90.
To clarify the role of excreted extracellular enzymes during long-term incubation in a pulp biobleaching system with white rot fungi, we developed a cultivation system in which a membrane filter is used; this membrane filter can prevent direct contact between hyphae and kraft pulp, but allows extracellular enzymes to attack the kraft pulp. Phanerochaete sordida YK-624 brightened the pulp 21.4 points to 54.0% brightness after a 5-day in vitro treatment; this value was significantly higher than the values obtained with Phanerochaete chrysosporium and Coriolus versicolor after a 7-day treatment. Our results indicate that cell-free, membrane-filtered components from the in vitro bleaching system are capable of delignifying unbleached kraft pulp. Obvious candidates for filterable reagents capable of delignifying and bleaching kraft pulp are peroxidase and phenoloxidase proteins. The level of secreted manganese peroxidase activity in the filterable components was substantial during strain YK-624 in vitro bleaching. A positive correlation between the level of manganese peroxidase and brightening of the pulp was observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号