全文获取类型
收费全文 | 265篇 |
免费 | 2篇 |
专业分类
267篇 |
出版年
2023年 | 2篇 |
2022年 | 1篇 |
2021年 | 2篇 |
2020年 | 3篇 |
2019年 | 6篇 |
2018年 | 3篇 |
2017年 | 6篇 |
2016年 | 2篇 |
2015年 | 6篇 |
2014年 | 6篇 |
2013年 | 14篇 |
2012年 | 18篇 |
2011年 | 28篇 |
2010年 | 14篇 |
2009年 | 3篇 |
2008年 | 22篇 |
2007年 | 14篇 |
2006年 | 21篇 |
2005年 | 17篇 |
2004年 | 11篇 |
2003年 | 13篇 |
2002年 | 10篇 |
2001年 | 2篇 |
2000年 | 5篇 |
1999年 | 3篇 |
1998年 | 2篇 |
1997年 | 3篇 |
1994年 | 1篇 |
1993年 | 2篇 |
1992年 | 1篇 |
1991年 | 5篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1987年 | 2篇 |
1986年 | 4篇 |
1984年 | 3篇 |
1983年 | 1篇 |
1979年 | 2篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1971年 | 1篇 |
1955年 | 1篇 |
1953年 | 1篇 |
排序方式: 共有267条查询结果,搜索用时 15 毫秒
201.
Role of colour and volatile in foraging behaviour of honeybee Apis cerana on Jacquemontia pentanthos
Floral visual and olfactory cues guide the insect visitors to the source of reward. This work addresses one such interaction between honeybee Apis cerana and a garden climber Jacquemontia pentanthos. Field studies have indicated that A. cerana showed preference to J. pentanthos over the other flowering plants during its visits for foraging. The objectives of the work is to understand the role of colour and scent in the attraction of Apis cerana to the host plant. Bioassays performed emphasized the involvement of colour and volatiles for the visits of A. cerana. Petals show high reflectance to ultraviolet light with ultraviolet absorbing regions in the centre which serve as a nectar guide. Gas chromatography linked electroanntenogram detector (GC-EAD) showed antennal response to the floral volatile of J. pentanthos identified as sesquiterpene β-caryophyllene. Behavioural studies have shown similar preference to β- caryophyllene as that of α-humulene. Our studies suggest an interplay of colour and volatiles cues for A. cerana visitation to Jacquemontia flowers and these findings are further supported by behavioural studies on.A. cerana. 相似文献
202.
Ashish Mishra Ippala Janardhan Reddy Paluru Subramanyam Parameswara Gupta Sukanta Mondal 《Animal biotechnology》2017,28(1):18-25
The present study was to find out the expression pattern and relative expression level of apoptotic (Bcl2, Bax, Casp3, and PCNA) and antioxidant enzyme [(GPx, Cu/Zn-SOD (SOD1) and Mn-SOD (SOD2)] genes in sheep oocytes and developing embryos produced in vitro by conventional RT-PCR and real time qPCR, respectively. Different developmental stages of embryos were produced in vitro from oocytes collected from local slaughter house ovaries. RT-PCR amplicons showed expression of Bcl2 and PCNA in all stages except at morula. In contrast Bax and Casp3 were expressed in all stages. GPx and SOD1 were expressed in all stages but SOD2 was not expressed in 8–16 cells, although expressed in the remaining stages. The qPCR analysis reflected that Bcl2 expression was significantly (P < 0.05) downregulated in morula and maximum upregulated expression was observed in in vitro matured oocytes. Higher upregulated expression (P < 0.05) of Bax was in morula and downregulated expression was at 2-4 cells. Casp3 was significantly upregulated at 8–16 cells and downregulated in in vitro matured oocyte. PCNA expression was highest at blastocyst and least expression was at morula. GPx was expressed significantly highest in matured oocytes and least expression was at zygote. SOD1 was expressed significantly highest at 8–16 cells and least expression was at zygote. Expression of SOD2 was least among all the antioxidant enzymes but significantly higher expression of SOD2 was in immature oocyte; however, least expression was at 8–16 cells. It can be concluded from the study that the sheep embryos produced in vitro are highly sensitive to culture condition, which alters the expression level of apoptotic and antioxidant enzyme genes. 相似文献
203.
204.
The influence of the genetic background of Cymbopogon species on the antifungal activity of essential oils derived from the plants was investigated against three yeast-like and nine filamentous fungi. Essential oils from distinct strains of the aromatic grass Cymbopogon showed interspecific and intraspecific differences in antifungal activity. 相似文献
205.
Achuthan C. Raghavamenon Sainath Babu Subramanyam N. Murthy Rao M. Uppu 《Biochemical and biophysical research communications》2009,386(1):170-95
Cholesterol secoaldehyde (ChSeco or 3β-hydroxy-5-oxo-5,6-secocholestan-6-al) has been shown to induce Aβ aggregation and apoptosis in GT1-7 hypothalamic neurons. The present study was undertaken to evaluate the effects of ChSeco on rat primary cortical neuronal cells. ChSeco was cytotoxic at concentrations ranging from 5 to 20 μM, while cholesterol of comparable concentrations showed little or no toxicity. In ChSeco-exposed neuronal cells, there was an increased formation of intracellular peroxide or peroxide-like substance(s), the levels of which were comparable to those found in typical menadione exposures. There was a loss in the mitochondrial transmembrane potential, the extent of which was dependent on concentration of ChSeco employed. Pre-treatment with N-acetyl-l-cysteine (5 mM; 1 h) offered protection against the cytotoxicity and the generation of intracellular oxidants. Cytotoxicity of ChSeco was evidenced by the loss of axonal branches and also condensed apoptotic nuclei in these cells. Immunohistochemical analysis revealed a decreased intracellular Aβ42 staining proportional to the loss in the axonal out growth and dendritic branches. The observed decrease in Aβ42 has been suggested to be due to loss of integrity of dendrites and the plasma membrane, possibly resulting from increased production of reactive oxygen species. 相似文献
206.
Background
Iron is an essential micronutrient for all organisms because it is a component of enzyme cofactors that catalyze redox reactions in fundamental metabolic processes. Even though iron is abundant on earth, it is often present in the insoluble ferric [Fe (III)] state, leaving many surface environments Fe-limited. The haploid green alga Chlamydomonas reinhardtii is used as a model organism for studying eukaryotic photosynthesis. This study explores structural and functional changes in PSI-LHCI supercomplexes under Fe deficiency as the eukaryotic photosynthetic apparatus adapts to Fe deficiency.Results
77K emission spectra and sucrose density gradient data show that PSI and LHCI subunits are affected under iron deficiency conditions. The visible circular dichroism (CD) spectra associated with strongly-coupled chlorophyll dimers increases in intensity. The change in CD signals of pigments originates from the modification of interactions between pigment molecules. Evidence from sucrose gradients and non-denaturing (green) gels indicates that PSI-LHCI levels were reduced after cells were grown for 72 h in Fe-deficient medium. Ultrafast fluorescence spectroscopy suggests that red-shifted pigments in the PSI-LHCI antenna were lost during Fe stress. Further, denaturing gel electrophoresis and immunoblot analysis reveals that levels of the PSI subunits PsaC and PsaD decreased, while PsaE was completely absent after Fe stress. The light harvesting complexes were also susceptible to iron deficiency, with Lhca1 and Lhca9 showing the most dramatic decreases. These changes in the number and composition of PSI-LHCI supercomplexes may be caused by reactive oxygen species, which increase under Fe deficiency conditions.Conclusions
Fe deficiency induces rapid reduction of the levels of photosynthetic pigments due to a decrease in chlorophyll synthesis. Chlorophyll is important not only as a light-harvesting pigment, but also has a structural role, particularly in the pigment-rich LHCI subunits. The reduced level of chlorophyll molecules inhibits the formation of large PSI-LHCI supercomplexes, further decreasing the photosynthetic efficiency. 相似文献207.
The influence of sanitation on responses of life stages of the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), an economically important pest in flour mills, was investigated in a pilot flour mill subjected to two, 24-h heat treatments. One hundred eggs or 100 adults of T. castaneum were exposed inside each 20-cm diameter by 15-cm high PVC rings holding 0.1-, 0.2-, 1.0-, 3.0-, 6.0-, and 10.0-cm-deep wheat flour to simulate different sanitation levels that may exist in a flour mill. These rings were placed on the first and third floors of a pilot flour mill. On the first floor, temperatures inside rings with eggs reached 50 degrees C in 7-11 h only in 0.1- and 0.2-cm-deep flour treatments. In all other treatments the maximum temperatures attained generally were below 50 degrees C and inversely related to flour depth. Adults of T. castaneum on this floor were less susceptible than eggs. The egg mortality decreased linearly with an increase in flour depth, whereas that of adults decreased exponentially. All eggs and adults in rings on the third floor were killed irrespective of flour depth, because temperatures inside rings reached 50 degrees C in 15-17 h and were held above 50 degrees C for 6-8 h with the maximum temperatures ranging between 55.0 and 57.0 degrees C. Although the protective effects of flour on survival of T. castaneum eggs and adults were evident only if temperatures did not reach 50 degrees C, removal of flour accumulations is essential to improve heat treatment effectiveness. 相似文献
208.
Two field strains of the Indianmeal moth, Plodia interpunctella (Hübner); red flour beetle, Tribolium castaneum (Herbst); and lesser grain borer, Rhyzopertha dominica (F.), and one field strain of the rusty grain beetle, Cryptolestes ferrugineus (Stephens), were collected from hard red winter wheat stored on farms in northeastern Kansas. Fifty eggs of P. interpunctella and 25 beetle adults of each species were exposed to 100 g of untreated wheat or wheat treated with various rates of spinosad, to determine susceptibility of the field and corresponding insecticide-susceptible laboratory strains. Mortality of beetle adults and P. interpunctella larvae was assessed after 7 and 21 d postinfestation, respectively. Field strains of P. interpunctella, C. ferrugineus, and T. castaneum were less susceptible to spinosad than the corresponding laboratory strains. The LD50 and LD95 values for P. interpunctella and C. ferrugineus field strains were 1.7-2.5 times greater than values for corresponding laboratory strains. Adults of both laboratory and field strains of T. castaneum were tolerant to spinosad, resulting in <88% mortality at 8 mg/kg. The LD50 and LD95 values for the field strains of T. castaneum were 2.0-7.5 times greater compared with similar values for the laboratory strain. The field and laboratory strains of R. dominica were highly susceptible to spinosad, and one of the field strains was relatively less susceptible to spinosad than the laboratory strain. Our results confirm a range of biological variability in field populations, which is consistent with findings for other compounds, and underscores the need to adopt resistance management programs with stored grain insect pests. The baseline data generated on the susceptibility of the four insect species to spinosad will be useful for monitoring resistance development and for setting field rates. 相似文献
209.
210.
Subramanyam Rajagopal Allakhverdiev Suleyman I. Govindjee 《Photosynthesis research》2019,139(1-3):45-52
Photosynthesis Research - We summarize here research contributions of eight stalwarts in photosynthesis research from India. These distinguished scientists (Shree Kumar Apte, Basanti Biswal, Udaya... 相似文献