首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3983篇
  免费   249篇
  国内免费   4篇
  4236篇
  2023年   21篇
  2022年   53篇
  2021年   94篇
  2020年   64篇
  2019年   73篇
  2018年   122篇
  2017年   91篇
  2016年   166篇
  2015年   216篇
  2014年   214篇
  2013年   320篇
  2012年   342篇
  2011年   325篇
  2010年   219篇
  2009年   144篇
  2008年   241篇
  2007年   233篇
  2006年   219篇
  2005年   196篇
  2004年   169篇
  2003年   152篇
  2002年   151篇
  2001年   31篇
  2000年   17篇
  1999年   30篇
  1998年   34篇
  1997年   28篇
  1996年   24篇
  1995年   24篇
  1994年   19篇
  1993年   19篇
  1992年   28篇
  1991年   17篇
  1990年   11篇
  1989年   12篇
  1988年   12篇
  1987年   9篇
  1986年   11篇
  1985年   8篇
  1984年   7篇
  1983年   11篇
  1982年   7篇
  1981年   5篇
  1980年   3篇
  1979年   6篇
  1978年   4篇
  1977年   6篇
  1976年   4篇
  1975年   5篇
  1974年   4篇
排序方式: 共有4236条查询结果,搜索用时 15 毫秒
101.
Transgenic apple plants (Malus × domestica cv. ‘Holsteiner Cox’) overexpressing the Leaf Colour (Lc) gene from maize (Zea mays) exhibit strongly increased production of anthocyanins and flavan-3-ols (catechins, proanthocyanidins). Greenhouse plants investigated in this study exhibit altered phenotypes with regard to growth habit and resistance traits. Lc-transgenic plants show reduced size, transversal gravitropism of lateral shoots, reduced trichome development, and frequently reduced shoot diameter and abnormal leaf development with fused leaves. Such phenotypes seem to be in accordance with a direct or an indirect effect on polar-auxin-transport in the transgenic plants. Furthermore, leaves often develop necrotic lesions resembling hypersensitive response lesions. In tests, higher resistance against fire blight (caused by the bacterium Erwinia amylovora) and against scab (caused by the fungus Venturia inaequalis) is observed. These phenotypes are discussed with respect to the underlying altered physiology of the Lc-transgenic plants. The results are expected to be considered in apple breeding strategies.  相似文献   
102.
103.
Human sexual determination is initiated by a cascade of genes that lead to the development of the fetal gonad. Whereas development of the female external genitalia does not require fetal ovarian hormones, male genital development requires the action of testicular testosterone and its more potent derivative dihydrotestosterone (DHT). The "classic" biosynthetic pathway from cholesterol to testosterone in the testis and the subsequent conversion of testosterone to DHT in genital skin is well established. Recently, an alternative pathway leading to DHT has been described in marsupials, but its potential importance to human development is unclear. AKR1C2 is an enzyme that participates in the alternative but not the classic pathway. Using a candidate gene approach, we identified AKR1C2 mutations with sex-limited recessive inheritance in four 46,XY individuals with disordered sexual development (DSD). Analysis of the inheritance of microsatellite markers excluded other candidate loci. Affected individuals had moderate to severe undervirilization at birth; when recreated by site-directed mutagenesis and expressed in bacteria, the mutant AKR1C2 had diminished but not absent catalytic activities. The 46,XY DSD individuals also carry a mutation causing aberrant splicing in AKR1C4, which encodes an enzyme with similar activity. This suggests a mode of inheritance where the severity of the developmental defect depends on the number of mutations in the two genes. An unrelated 46,XY DSD patient carried AKR1C2 mutations on both alleles, confirming the essential role of AKR1C2 and corroborating the hypothesis that both the classic and alternative pathways of testicular androgen biosynthesis are needed for normal human male sexual differentiation.  相似文献   
104.
105.
Endoglin is a transforming growth factor-β (TGF- β) co-receptor that participates in the activation of a signaling pathway that mediates endothelial cell proliferation and migration in angiogenic tumor vasculature. Therefore, silencing of endoglin expression is an attractive approach for antiangiogenic therapy of tumors. The aim of our study was to evaluate the therapeutic potential of small interfering RNA (siRNA) molecules against endoglin in vitro and in vivo. Therapeutic potential in vitro was assessed in human and murine endothelial cells (HMEC-1, 2H11) by determining endoglin expression level, cell proliferation and tube formation. In vivo, the therapeutic potential of siRNA molecules was evaluated in TS/A mammary adenocarcinoma growing in BALB/c mice. Results of our study showed that siRNA molecules against endoglin have a good antiangiogenic therapeutic potential in vitro, as expression of endoglin mRNA and protein levels in mouse and human microvascular endothelial cells after lipofection were efficiently reduced, which resulted in the inhibition of endothelial cell proliferation and tube formation. In vivo, silencing of endoglin with triple electrotransfer of siRNA molecules into TS/A mammary adenocarcinoma also significantly reduced the mRNA levels, number of tumor blood vessels and the growth of tumors. The obtained results demonstrate that silencing of endoglin is a promising antiangiogenic therapy of tumors that could not be used as single treatment, but as an adjunct to the established cytotoxic treatment approaches.  相似文献   
106.
Chemerin, a chemoattractant ligand for chemokine-like receptor 1 (CMKLR1) is predicted to share similar tertiary structure with antibacterial cathelicidins. Recombinant chemerin has antimicrobial activity. Here we show that endogenous chemerin is abundant in human epidermis, and that inhibition of bacteria growth by exudates from organ cultures of primary human skin keratinocytes is largely chemerin-dependent. Using a panel of overlapping chemerin-derived synthetic peptides, we demonstrate that the antibacterial activity of chemerin is primarily mediated by Val66-Pro85, which causes direct bacterial lysis. Therefore, chemerin is an antimicrobial agent in human skin.  相似文献   
107.
The Cu(I) catalyzed Huisgen 1,3‐dipolar azide‐alkyne cycloaddition (CuAAC) was applied for a nucleoside‐peptide bioconjugation. Systemin (Sys), an 18‐aa plant signaling peptide naturally produced in response to wounding or pathogen attack, was chemically synthesized as its N‐propynoic acid functionalized analog (Prp‐Sys) using the SPPS. Next, CuAAC was applied to conjugate Prp‐Sys with 3′‐azido‐2′,3′‐dideoxythymidine (AZT), a model cargo molecule. 1,4‐Linked 1,2,3‐triazole AZT‐Sys conjugate was designed to characterize the spreading properties and ability to translocate of cargo molecules of systemin. CuAAC allowed the synthesis of the conjugate in a chemoselective and regioselective manner, with high purity and yield. The presence of Cu(I) ions generated in situ drove the CuAAC reaction to completion within a few minutes without any by‐products. Under typical separation conditions of phosphate ‘buffer’ at low pH and uncoated fused bare‐silica capillary, an increasing peak intensity assigned to triazole‐linked AZT‐Sys conjugate was observed using capillary electrophoresis (CE) during CuAAC. CE analysis showed that systemin peptides are stable in tomato leaf extract for up to a few hours. CE‐ESI‐MS revealed that the native Sys and its conjugate with AZT are translocated through the tomato stem and can be directly detected in stem exudates. The results show potential application of systemin as a transporter of low molecular weight cargo molecules in tomato plant and of CE method to characterize a behavior of plant peptides and its analogs. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
108.
Sorghum with its remarkable adaptability to drought and high temperature provides a model system for grass genomics and resource for gene discovery especially for abiotic stress tolerance. Group 3 LEA genes from barley and rice have been shown to play crucial role in abiotic stress tolerance. Here, we present a genome-wide analysis of LEA3 genes in sorghum. We identified four genes encoding LEA3 proteins in the sorghum genome and further classified them into LEA3A and LEA3B subgroups based on the conservation of LEA3 specific motifs. Further, expression pattern of these genes were analyzed in seeds during development and vegetative tissues under abiotic stresses. SbLEA3A group genes showed expression at early stage of seed development and increased significantly at maturity, while SbLEA3B group genes expressed only in matured seeds. Expression of SbLEA3 genes in response to abiotic stresses such as soil moisture deficit (drought), osmotic, salt, and temperature stresses, and exogenous ABA treatments was also studied in the leaves of 2-weeks-old seedlings. ABA and drought induced the expression of all LEA3 genes, while cold and heat stress induced none of them. Promoter analysis revealed the presence of multiple ABRE core cis-elements and a few low temperature response (LTRE)/drought responsive (DRE) cis-elements. This study suggests non-redundant function of LEA3 genes in seed development and stress tolerance in sorghum.  相似文献   
109.
110.
Abstract

This paper presents the process of designing a new elastic element replacing a membrane in the chamber stapes prosthesis (ChSP). The results of the study are volume displacement characteristics obtained for the prosthesis and physiological stapes. Simulation tests on a 3D CAD model have confirmed that a properly designed ring can stimulate perilymph with the same or greater efficacy as the physiological stapes footplate placed on the elastic annular ligament. The ChSP with a new elastic element creates a good chance of improving hearing in patients suffering from otosclerosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号