首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   18篇
  2022年   1篇
  2021年   3篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   6篇
  2012年   6篇
  2011年   8篇
  2010年   6篇
  2009年   2篇
  2008年   11篇
  2007年   5篇
  2006年   6篇
  2005年   7篇
  2004年   5篇
  2003年   5篇
  2002年   4篇
  2001年   6篇
  2000年   4篇
  1999年   7篇
  1998年   6篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1991年   3篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1975年   2篇
  1969年   1篇
  1966年   1篇
排序方式: 共有135条查询结果,搜索用时 15 毫秒
111.
Phosphofructokinase-2 is a dimeric enzyme that undergoes cold denaturation following a highly cooperative N2 2I mechanism with dimer dissociation and formation of an expanded monomeric intermediate. Here, we use intrinsic fluorescence of a tryptophan located at the dimer interface to show that dimer dissociation occurs slowly, over several hours. We then use hydrogen-deuterium exchange mass spectrometry experiments, performed by taking time points over the cold denaturation process, to measure amide exchange throughout the protein during approach to the cold denatured state. As expected, a peptide corresponding to the dimer interface became more solvent exposed over time at 3°C; unexpectedly, amide exchange increased throughout the protein over time at 3°C. The rate of increase in amide exchange over time at 3°C was the same for each region and equaled the rate of dimer dissociation measured by tryptophan fluorescence, suggesting that dimer dissociation and formation of the cold denatured intermediate occur without appreciable buildup of folded monomer. The observation that throughout the protein amide exchange increases as phosphofructokinase-2 cold denatures provides experimental evidence for theoretical predictions that cold denaturation primarily occurs by solvent penetration into the hydrophobic core of proteins in a sequence-independent manner.  相似文献   
112.
Water-in-oil microemulsion systems have been studied in recent years for a number of applications in protein separation and enzymology. Although it is well established that reversed micelle systems provide an excellent medium for nonaqueous biocatalytic studies, there is still much speculation as to the interaction of the enzyme with the surfactant interface. Polyoxyethylene sorbitan trioleate (Tween 85) is a nonionic surfactant which has some interesting properties for microemulsion formation and protein solubilization. In conjunction with a separate article describing the structural features of Tween 85 reversed micelles in hexane with isopropanol as a cosurfactant, this work describes the activity of an enzyme, organophosphorus hydrolase, for degrading organophosphorus pesticides in this microemulsion system. Ternary phase diagrams were constructed to outline the phase boundaries at different temperatures and isopropanol concentrations, which elucidate the role of the cosurfactant alcohol, as well as some features of micelle structure. Kinetic and stability studies with organophosphorus hydrolase show the effect of enzyme partitioning between the micelle surfactant layer and aqueous core. (c) 1994 John Wiley & Sons, Inc.  相似文献   
113.
A genetic screen was performed to isolate mutants showing increased arsenic tolerance using an Arabidopsis thaliana population of activation tagged lines. The most arsenic-resistant mutant shows increased arsenate and arsenite tolerance. Genetic analyses of the mutant indicate that the mutant contains two loci that contribute to arsenic tolerance, designated ars4 and ars5. The ars4ars5 double mutant contains a single T-DNA insertion, ars4, which co-segregates with arsenic tolerance and is inserted in the Phytochrome A (PHYA) gene, strongly reducing the expression of PHYA. When grown under far-red light conditions ars4ars5 shows the same elongated hypocotyl phenotype as the previously described strong phyA-211 allele. Three independent phyA alleles, ars4, phyA-211 and a new T-DNA insertion allele (phyA-t) show increased tolerance to arsenate, although to a lesser degree than the ars4ars5 double mutant. Analyses of the ars5 single mutant show that ars5 exhibits stronger arsenic tolerance than ars4, and that ars5 is not linked to ars4. Arsenic tolerance assays with phyB-9 and phot1/phot2 mutants show that these photoreceptor mutants do not exhibit phyA-like arsenic tolerance. Fluorescence HPLC analyses show that elevated levels of phytochelatins were not detected in ars4, ars5 or ars4ars5, however increases in the thiols cysteine, gamma-glutamylcysteine and glutathione were observed. Compared with wild type, the total thiol levels in ars4, ars5 and ars4ars5 mutants were increased up to 80% with combined buthionine sulfoximine and arsenic treatments, suggesting the enhancement of mechanisms that mediate thiol synthesis in the mutants. The presented findings show that PHYA negatively regulates a pathway conferring arsenic tolerance, and that an enhanced thiol synthesis mechanism contributes to the arsenic tolerance of ars4ars5.  相似文献   
114.
115.
A fragment corresponding to the putative membrane-associating domain of the prion protein (residues 110-136) was analyzed in phospholipid bicelles. Prion(110-136) associated with bicelles and exhibited a lipid- and pH-dependent conformational dimorphism between unstructured (pH 4.5) and alpha-helical (pH 7.5). Mutational analysis indicated that the charge state of a single histidine residue was largely responsible for the dimorphism. Amide-lipid NOEs and amide-water chemical exchange measurements revealed that the helical conformation of prion(110-136) spanned the bilayer, and were corroborated by solid-state deuterium NMR experiments indicating that the helical axis rested at a 16 degrees angle with respect to the bilayer normal.  相似文献   
116.
Methylnitrosourea (MNU), ethyl methanesulfonate (EMS), and 4-nitroquinoline-N-oxide (4NQO) induce mutation to 6-thioguanine resistance and trifluorothymidine resistance in diploid human lymphoblasts (TK6). In single exposure experiments in which greater than 10% of treated cells survive, mutation as a function of concentration is linear for MNU, accelerates for EMS and appears to reach a plateau for 4NQO. In order to probe the bases of these concentration dependencies, human lymphoblasts were exposed for 20 days to each of the three mutagens. Each individual exposure chosen was in itself insufficient to induce statistically significant mutation and each resulted in a cellular survival of greater than 95%. Under this regimen, induced mutation as a function of the number of exposures was linear for all three mutagens. Prior exposure to low concentrations of mutagens was found to have no significant effect on the amount of mutation induced in subsequent exposures. Thus, no biological evidence was found for the induction of repair of misrepair systems.  相似文献   
117.
The thrombin-bound structures of native peptide fragments from the fifth EGF-like domain of thrombomodulin were determined by use of NMR and transferred NOE spectroscopy. The bound peptides assume an EGF-like structure of an antiparallel beta-sheet, a novel structural motif observed for a bound peptide in protein-peptide complexes. There is a remarkable structural resiliency of this structure motif manifested in its ability to accommodate a different number of residues within the disulfide loop. Docking experiments revealed that the key contacts with thrombin are hydrophobic interactions between the side chains of residues Ile 414 and Ile 424 of thrombomodulin and a hydrophobic pocket on the thrombin surface. Residues Leu 415, Phe 419, and Ile 420, which would have been buried in intact EGF-like domains, are unfavorably exposed in the complex of thrombin with the EGF-like thrombomodulin fragment, thus providing a rationale for the enhancement of binding affinity upon the deletion of Ile 420. The unique beta-sheet structures of the bound peptides are specified by the presence of disulfide bridges in the peptides because a corresponding linear thrombomodulin fragment folds into a sheet structure with a different backbone topology. The different bound conformations for the linear and the cyclized peptides indicate that side-chain interactions within a specific environment may dictate the folding of bound peptides in protein-peptide complexes.  相似文献   
118.
The fourth EGF-like domain of thrombomodulin (TM4), residues E346-F389 in the TM sequence, has been synthesized. Refolding of the synthetic product under redox conditions gave a single major product. The disulfide bonding pattern of the folded, oxidized domain was (1-3, 2-4, 5-6), which is the same as that found in EGF protein. TM4 was tested for TM anticoagulant activity because deletion and substitution mutagenesis experiments have shown that the fourth EGF-like domain of TM is essential for TM cofactor activity. TM4 showed no TM-like activity in two assay systems, both for inhibition of fibrin clot formation, and for cofactor activity in thrombin activation of protein C. A preliminary structure of TM4 was determined by 2D 1H NMR from 519 NOE-derived distance constraints. Distance geometry calculations yielded a single convergent structure. The structure resembles the structure of EGF and other known EGF-like domains but has some key differences. The central two-stranded beta-sheet is conserved despite the differences in the number of amino acids in the loops. The C-terminal loop formed by the disulfide bond between C372 and C386 in TM4 is five amino acids longer than the analogous loop between C33 and C42 of EGF protein. This loop appears to have a different fold in TM4 than in EGF protein. The loop forms the two outside strands of a broken, irregular tri-stranded beta-sheet, and amino acids H384-F389 lie between the two strands forming the middle strand of the sheet. Thus, although the C-terminus of EGF protein forms one of the outside strands of a tri-stranded antiparallel sheet, the C-terminus of TM4 forms the inside strand of an irregular tri-stranded parallel-anti-parallel sheet. The residues D349, E357, and E374, which were shown to be critical for cofactor activity by alanine scanning mutagenesis, all lie in a patch near the C-terminal loop, and are solvent accessible. The other critical residues, Y358 and F376, are largely buried and appear to play essential structural rather than functional roles.  相似文献   
119.
Thrombin inhibition by cyclic peptides from thrombomodulin.   总被引:4,自引:3,他引:1       下载免费PDF全文
Peptides corresponding to the loop regions of the fourth, fifth, and sixth epidermal growth factor (EGF)-like domains of thrombomodulin (TM) have been synthesized and assayed for thrombin inhibition, as indicated by both inhibition of thrombin-mediated fibrinogen clotting and inhibition of the association of thrombin with TM that results in protein C activation. Peptides from the fifth EGF-like domain showed significant inhibition of fibrinogen clotting and protein C activation, whereas peptides from the fourth and sixth EGF-like domains were weak inhibitors in both assays. Two structural features were important for inhibitory potency of the peptides from the fifth EGF-like domain: cyclization by a disulfide bond and attachment of the "tail" amino acids C-terminal to the disulfide loop. Linear control peptides did not significantly inhibit clotting or protein C activation. The C-terminal loop alone, the "tail" peptide, or a mixture of the two were at least 10-fold less potent inhibitors of clotting or protein C activation. A more constrained peptide analog was designed by deletion of an isoleucine within the C5-C6 disulfide loop, TM52-1 + 5C. This analog was a better inhibitor in both assay systems, having a Ki for protein C activation of 26 microM.  相似文献   
120.
A model of the carbohydrate recognition domain CRD, residues 111-245, of hamster galectin-3 has been made using homology modeling and dynamics minimization methods. The model is based on the known x-ray structures of bovine galectin-1 and human galectin-2. The oligosaccharides NeuNAc-alpha2,3-Gal-beta1,4-Glc and GalNAc-alpha1, 3- [Fuc-alpha1,2]-Gal-beta1,4-Glc, known to be specific high-affinity ligands for galectin-3, as well as lactose recognized by all galectins were docked in the galectin-3 CRD model structure and a minimized binding conformation found in each case. These studies indicate a putative extended carbohydrate-binding subsite in the hamster galectin- 3 involving Arg139, Glu230, and Ser232 for NeuNAc-alpha2,3-; Arg139 and Glu160 for fucose-alpha1,2-; and Arg139 and Ile141 for GalNAc-alpha1,3- substituents on the primary galactose. Each of these positions is variable within the whole galectin family. Two of these residues, Arg139 and Ser232, were selected for mutagenesis to probe their importance in this newly identified putative subsite. Residue 139 adopts main-chain dihedral angles characteristic of an isolated bridge structural feature, while residue 232 is the C-terminal residue of beta- strand-11, and is followed immediately by an inverse gamma-turn. A systematic series of mutant proteins have been prepared to represent the residue variation present in the aligned sequences of galectins-1, - 2, and -3. Minimized docked models were generated for each mutant in complex with NeuNAc-alpha2,3-Gal-beta1,4-Glc, GalNAc-alpha1, 3-[Fuc- alpha1,2]-Gal-beta1,4- Glc, and Gal-beta1,4-Glc. Correlation of the computed protein-carbohydrate interaction energies for each lectin- oligosaccharide pair with the experimentally determined binding affinities for fetuin and asialofetuin or the relative potencies of lactose and sialyllactose in inhibiting binding to asiolofetuin is consistent with the postulated key importance of Arg139 in recognition of the extended sialylated ligand.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号